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Preface

This is the fi rst of a series of reports expected from 

CRC for Catchment Hydrology Program 5, Climate 

Variability.  This program aims to reduce management 

uncertainty by developing space-time models for 

Australia, improving the representativeness of surface 

hydrology in numerical weather prediction models, 

developing methods to forecast rainfall and streamfl ow 

several hours to several months ahead, and establishing 

a robust set of stochastic models for the generation of 

climate and streamfl ow.

This report deals with the latter aspect, and is part 

of CRCCH Project 5.2 (National Data Bank of 

Stochastic Climate and Streamfl ow Models).  The 

recommendations outlined in the report will form the 

basis of the research program to be conducted in this 

project.

Russell Mein

Director
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Summary

The purpose of the report is to review the state of 

research and practice in the stochastic generation of 

annual, monthly and daily climate data. This review 

forms part of the Cooperative Research Centre for 

Catchment Hydrology Project 5.2: National data bank 

of stochastic climate and streamfl ow models. 

The generation of rainfall and other climate data needs 

a range of models depending on the time and spatial 

scales involved. There are three broad types of rainfall 

models, namely, empirical statistical models, models 

of dynamic meteorology and intermediate stochastic 

models. The models included in the review are empirical 

statistical models only.

Surprisingly, very little work has been done since 

1985 in stochastic generation of annual and monthly 

rainfall data. Because the generation of annual and 

monthly rainfall and streamfl ow are similar, streamfl ow 

generation models have been included in this part of 

the review. Most of the models used in the past do 

not take into account the year to year variations in the 

model parameters. They were assumed to be constant 

from year to year and only the within-year seasonal 

variations in parameters were taken into account. Long 

periods of wet and dry years were observed in the past 

and this needs to be considered in the model structure. 

Recently, Thyer and Kuczera, University of Newcastle 

developed a hidden state Markov model to account for 

the long term persistence in annual rainfall. The review 

looked at the traditional time series models fi rst and 

then the more complex models, which take account of 

long term persistence in the data.

Monthly rainfall data have been successfully generated 

by using the method of fragments. The  main criticism 

of this approach is the repetition of the same yearly 

pattern when there is only a limited number of years of 

historical data. This defi ciency was overcome by using 

synthetic fragments but this brings in an additional 

problem of generating the right number of months 

of zero rainfall. The disaggregation schemes are an 

effective way to obtain monthly data but the main 

problem is the large number of parameters to estimate 

when dealing with a large number of sites. Several 

simplifi cations are proposed to overcome this problem. 

Here again, one needs to take into account year to year 

variation in model parameters and this has not been 

done before.

Models for generating daily rainfall are well developed 

and a great deal of progress has been made recently 

in developing techniques for parameter estimation. The 

transition probability method appears to preserve most 

of the characteristics of daily, monthly and annual 

characteristics and is shown to be the best performing 

model. The main drawback with this method is the 

large number of parameters, which makes it almost 

impossible to regionalise the parameters. The two part 

model has been shown to perform well in other parts of 

the world by many researchers. A shortcoming of the 

existing models is the consistent underestimation of the 

variances of the simulated monthly and annual totals. 

Recently, Wang and Nathan constrained a two part 

daily model within a monthly model and it appears to 

perform well. Also, Boughton has adjusted the generated 

daily rainfalls by a trial and error procedure to match 

the variance of the observed annual rainfall. As an 

alternative, conditioning model parameters on monthly 

amounts or perturbing the model parameters with the 

SOI result in better agreement between the variance of 

the simulated and observed annual rainfall and these 

approaches should be investigated further.

A special characteristic that must be preserved in 

stochastic modelling of climate data is the cross 

correlation between variables. The models for 

generating climate data at annual, monthly and daily 

time intervals are reviewed in this section. As climate 

data are less variable than rainfall, but are correlated 

among themselves and with rainfall, mutisite models 

have been used successfully to generate annual data. The 

monthly climate data can be obtained by disaggregating 

the generated annual data. On a daily time step at a site, 

climate data has been generated by using a  multisite 

type model conditional on the state of the present and 

previous days. The generation of daily climate data at 

a number of sites remains a challenging problem. If 

daily rainfall can be successfully modelled by truncated 

power normal distribution then the model can be easily 

extended to generate daily climate data at several sites 

simultaneously.
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Concerns over climate change caused by increasing 

concentration of CO
2
 and other trace gases in the 

atmosphere has increased in recent years. A major 

effect of climate change may be alterations in regional 

hydrologic cycles and changes in regional water 

availability. The main source of climate change 

projections is the general circulation models (GCMs). 

While current GCMs perform reasonably well in 

simulating the present climate with respect to annual 

and seasonal averages over large areas, they are 

considerably less reliable in providing regional scale 

information that are necessary for hydrological studies. 

As a result, the climate change impact studies have 

had to use a spectrum of climate change scenarios. 

These are generally constructed using observed records 

of temperature and rainfall adjusted to refl ect climate 

changes obtained from monthly average GCM results.

Most of the early work on the impacts of climate change 

used historical data adjusted for the climate change. In 

recent studies, the stochastic daily weather generation 

models are adapted for generation of synthetic daily 

time series consistent with assumed future climates. 

The assumed climates were specifi ed by the monthly 

means and variances of rainfall and temperature. The 

greatest uncertainty in modelling climate data under 

climate change conditions is the uncertainty in the 

future climate predictions. The GCMs at present are 

able to provide either scenarios or projections of the 

future climate. If the future climate conditions are 

known with suffi cient accuracy, the stochastic climate 

models available at present can be adapted to generate 

climate for the new conditions. 

Since the rainfall and climate data are much less 

variable and less correlated than streamfl ow, the existing 

models can be used to generate these at annual and 

monthly level for single and multisites. As these models 

do not take into account of long term persistence, 

hidden state Markov and other models need to be 

investigated. Regarding daily rainfall, the transition 

probability matrix method performs well, but is not 

suitable for regionalisation and with limited length 

of data. Wang and Nathan approach appears to be 

promising. The review makes recommendations on 

models to be adopted and models that should be 

further tested. The recommended models can be used to 

generate climate data under climate change conditions 

by adjusting the parameters appropriately.
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Notations/Abbreviations

A Coeffi cient matrix

� Coeffi cient matrix

B Beta model generator

C Coeffi cient matrix

C
ik
 Amplitude of the kth harmonic

d Threshold for defi ning a wet or dry day

e Error term

F Adjustment factor

f(u) Probability density function of the 

 random variable u

F(u) Probability distribution function of the random 

 variable u

G Systemic multiplier to include spatial variation in

 rainfall

G
i
(t) Value of the ith parameter on day t 

G
i0
 Mean value of the ith parameter

GCM General circulation model

g
ij
(t) Logit transform of probability pij(t) for day t

HSM Hidden state Markov

I
i
 Mean intensity of rainfall for wet days for weather

 type i

L
o
 Outer length scale

M Observed mean annual rainfall

M
0
 Lag zero cross correlation matrix

M
�
 Lag zero cross correlation matrix

MAR Multivariate autoeregressive

MCi Markov chain of order i

m Number of sites

m
i
  Maximum number of harmonics

NHMM  Nonhomogeneous hidden state Markov model 

n
ij
 Number of transitions from state i to state j 

P Transition probability matrix used in HSM model

P(W|D) Probability of transition from state dry to wet

P(W|W) Probability of transition from state dry to wet

P(W) Probability of wet day

P
ij
 Probability of transition from state i to state j

 (elements of P)

p number of climatic variables

p
ij
(t) Probability of transition from state i to state j on day t

R Rainfall amount for a wet day

R
o
 Average rainfall intensity at the outer length scale

r Lag one autocorrelation coeffi cient

S
t
 State of a year t

s
x
 Standard deviation of annual rainfall

s
y
 Standard deviation of monthly rainfall for the last

 month of a year

S
XY

 Matrix of the cross product of X and Y

T
i
 Generated annual rainfall for year i

U A uniform random variable between 0 and 1

u
t
 Vector of uniformly distributed random variates

 (0,1)

v
t
 Vector of uniformly distributed random variates

 (0,1)

W cascade generators

X
t
 A vector of standardised annual rainfall or climate

 data

X
t
 Annual rainfall or climate data in year t having 

 zero mean and unit variance

x
t
 Annual rainfall for year t

X(t) State of day t (wet or dry)

Y Monthly rainfall or climate data for the 

 present year

Y Log normal variable

y
k-1

 Disaggregated monthly rainfall for the last month

 of the year k-1

y
i, τ Monthly rainfall for year i and month τ 

Z Monthly rainfall or climate data for the 

 previous year

α(t) Shape parameter of gamma distribution for day t

α Mixing fraction for the mixed exponential   

 distribution

α
i
 A coeffi cient  

β(t) Scale parameter of gamma distribution for day t

β Parameter of the exponential distribution

β
i
 A coeffi cient

δ Parameter of the exponential distribution

ε
t
 Random number with zero mean and unit variance

ε
t
 Matrix of random numbers with zero mean and 

 unit variance

Ω Variance - covariance matrix

Φ Normal probability distribution function

φ
ik
 Phase angle of the kth harmonic for the 

 ith parameter

φ Normal cumulative distribution function

γ Skewness of e

γε Skewness of annual data

η Normally distributed random number with zero 

 mean and unit variance

κ Shape parameter of the gamma distribution

µ
dry

 Mean of dry year rainfalls

µ
wet

 Mean of wet year rainfalls

π
1
 Probability of being wet in year 1

θ
ks

 Coeffi cients in the rainfall regression equation

σ
dry

 Standard deviation of dry year rainfalls

σ
wet

 Standard deviation of wet year rainfalls

τ Season or month

ω(k,l) Correlation between the Gaussian random variates 

 at sites k and l, which forces the occurrence 

 process

ξ(k,l) Correlation between the binary occurrence variates 

 at sites k and l

ψ  Matrix of random numbers

ζ(k,l) Correlation between the rainfall amounts at sites 

 k and l

Γ( ) Gamma function

(i)



COOPERATIVE RESEARCH CENTRE FOR   CATCHMENT HYDROLOGY

1

1 Introduction

1.1 Purpose of the report

The purpose of this report is to review the present state 

of research and practice in the stochastic generation of 

climate data. This review forms part of the Cooperative 

Research Centre for Catchment Hydrology Project 5.2: 

National data bank of stochastic climate and streamfl ow 

models. The stochastic generation of streamfl ow data is 

not reviewed in this report and will be carried out later.

A one-day workshop of stakeholders was held at the 

Bureau of Meteorology, Melbourne on 19 March 2000 

to come up with a list of climate variables and the time 

intervals. The participants agreed on the following list 

of climate variables to be included in the project:

• Single site  (point)

 1. daily rainfall (monthly and annual)

 2. daily mean temperature

 3. daily global radiation

 4. daily wind run

 5. daily vapour pressure defi cit

 6. short duration rainfall 

• Multisite (catchment)

 1. monthly rainfall

 2. monthly number of raindays

 3. monthly potential evapotranspiration

The objectives of this review are:

• to survey the literature and identify the latest 

developments in stochastic data generation of the 

above listed climate variables

• to recommend models which perform adequately 

and identify areas for further model development

1.2 Background

One of the major gaps identifi ed by industry and 

researchers is the need to quantify the uncertainty in 

hydrologic systems as a result of climatic variability. 

This need applies whether the systems are complex 

water resources systems or simple planning models of 

catchment behaviour. For very simple systems analytical 

techniques of estimating uncertainty may suffi ce but 

for the majority of the systems one has to resort to 

system simulation using stochastically generated data. 

In addition to quantifying the uncertainty, stochastically 

generated data has many applications such as the 

design and operation of water resources systems, 

design of urban drainage systems and land management 

changes.

What is stochastic data? Stochastic data are random 

numbers that are modifi ed so that they have the same 

characteristics (in terms of mean, variance, etc and 

auto-correlation structure) as the data set on which 

they are based. For example, in 1954 Frank Barnes 

of the then Melbourne Metropolitan Board of Works 

generated 1000 years of stochastic (or synthetic) annual 

streamfl ows for the Upper Yarra Dam investigation 

(Barnes, 1954). He did this by assuming the annual 

fl ows were independent and normally distributed and 

using a table of random numbers was able to generate 

the long time series. This was the fi rst occasion 

in Australia in which stochastic data were used in 

hydrologic investigation.

Even though there are a number of stochastic models 

available in the literature, most of them have not 

been adequately tested with regard to characteristics at 

different time scales or at a number of locations with 

different climates. For instance, a proper daily model 

should preserve the monthly and annual characteristics 

in addition to preserving the daily characteristics. 

In the past, all the data generation models generally 

assumed no variation in the parameters between years. 

Only the seasonal or monthly variations within a year 

have been taken into account and the same set of 

parameter values were used for all the years. There is 

a growing awareness of long term persistence in the 

climatic data in the form of wet and dry years or ENSO 

cycles and to take this information into account, the 

parameters of the models should be varied in some 

way to model the long term persistence. There is very 

little research work done on this and this project plans 

to cover this aspect as well. Another important aspect 

which did not receive much attention in the past is the 

quantifi cation of the uncertainty in model parameters. 

Recent developments in the Bayesian analysis such as 

Markov Chain Monte Carlo method are being used 

with the stochastic data generation models (Thyer and 

Kuczera, 1999; Wang 2000) and this project will attempt 

to quantify the uncertainty in the developed model 

parameters.
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The overall goal of the project is to identify and develop 

a robust set of stochastic models for the generation of 

climate and streamfl ow data anywhere in Australia at 

different time scales and to provide parameter values 

with known levels of uncertainty for the developed 

models. This report covers only the generation of 

rainfall and other climate data up to daily time interval. 

The generation of short duration rainfall data is not 

included in this review but will be dealt with separately. 

Since there is a growing concern on the impacts of 

climate change on water resources, the generation of 

climate data under changed climate conditions are 

briefl y reviewed.

The generation of rainfall and other climate data needs 

a range of models depending on the time and spatial 

scales involved. Cox and Isham (1994) presented 

three broad types of rainfall models, namely, empirical 

statistical models, models of dynamic meteorology 

and intermediate stochastic models. The idea behind 

this classifi cation is the amount of physical realism 

incorporated into the model structure. In the empirical 

statistical models, empirical stochastic models are fi tted 

to the available data. The models for the generation of 

annual, monthly and daily rainfall and climate data are of 

this type. In the models of dynamic meteorology, large 

systems of simultaneous nonlinear partial differential 

equations, representing fairly realistically the physical 

processes involved, are solved numerically. These are 

generally used for weather forecasting and not for data 

generation. In intermediate stochastic models, a modest 

number of parameters are used to represent the rainfall 

process, the parameters being intended to relate to 

underlying physical phenomena such as rain cells, rain 

bands and cell clusters. These types of models are used 

for the analysis of data collected at short time interval 

such as hourly. The models reviewed in this report are 

of the fi rst type only.

1.3 Layout of the report

Because of the different type of models used for different 

time scales, the review is carried out for different time 

scales separately. Chapters 2 and 3 cover the generation 

of rainfall data while chapter 4  covers the generation 

of climate data. In each chapter the models for the 

generation of data at a single site are reviewed fi rst 

followed by models for a number of sites or over an 

area. Chapter 2 deals with the generation of annual 

and monthly rainfall data at single and multi-sites. The 

models for the generation daily rainfall are reviewed 

in chapter 3. The generation of annual, monthly and 

daily climate data is reviewed in chapter 4. Chapter 

5 briefl y reviews the generation of climate data under 

climate change conditions. The conclusions from the 

review along with the recommendations are given in 

chapter 6.
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2 Annual and Monthly Rainfall Data

Surprisingly, very little work has been done since 1985 

in stochastic generation of annual and monthly rainfall 

data. However, the generation of annual and monthly 

streamfl ows is relevant for modelling large catchments 

and is therefore included in the review. Most of the 

models used in the past do not take into account the 

year to year variations in the model parameters. They 

were assumed to be constant from year to year and only 

the within-year seasonal variations in parameters were 

taken into account. Long period of wet and dry years 

were observed in the past (Warner, 1987; Srikanthan 

and Stewart, 1992) and this need to be considered 

in the model structure. Recently, Thyer and Kuczera 

(1999, 2000) developed a hidden state Markov model 

to account the long term persistence in annual rainfall. 

The following review looks at the traditional time series 

models fi rst and then the more complex models, which 

take into account of long term persistence in the data.

2.1 Annual rainfall data at a site

Srikanthan and McMahon (1985) recommended a fi rst 

order Markov model incorporating the Wilson-Hilferty 

transformation to generate annual rainfall data. 

 X
t
 = r X

t-1
 + (1-r2)1/2ε

t
   (2.1) 

        

      (2.2)

where  X
t
  =  standardised rainfall in year t having 

zero mean and unit variance

 r  =  lag one autocorrelation coeffi cient

 �
t
 = normally distributed random number 

with zero mean and unit variance

 �
t
 = random number with zero mean, unit 

variance and coeffi cient of skewness �
�
 

     which is related to the skewness of the 

annual data, �, through

       

     (2.3)

This model degenerates into a white noise model 

when the coeffi cient of skewness and the lag one 

autocorrelation coeffi cient are close to zero.

The annual rainfall amount is then obtained from

       

 x
t
 = x + sX

t
   (2.4)

where x and s are respectively the mean and standard 

deviation of the annual rainfall x
t
.

Thyer and Kuczera (1999) developed a hidden state 

Markov (HSM) model with Bayesian inference 

technique to generate annual rainfall data for Sydney. 

The model assumes that the climate is composed 

of two states, either a dry state (low rainfall year) 

or a wet state (high rainfall year). Each state has 

separate normal annual rainfall distributions. The 

transition from one state to the other is governed by the 

transition probabilities. If the transition probabilities 

are suffi ciently low then the climate may persist in 

one state for a number of years. This provides an 

explicit mechanism for the HSM model to simulate 

the infl uence of quasi-periodic phenomenon such as El 

Nino.

The simulation of annual rainfall is a two step process. 

In the fi rst step, the state at year t is simulated by a 

Markov process:

 S
t
|S

t-1
 ~ Markov (P,π

1
)  (2.5)

where P is the transition probability matrix whose 

elements p
ij
 are defi ned by:

p
ij
 = Pr(S

t
 = i|S

t-1
 = j) i, j = wet or dry (2.6)

and �
1
 is the probability distribution of the wet and dry 

states at year 1.
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Once the state for the year t is known, the annual 

rainfall is simulated using:

      (2.7)

where N(µ, �2) denotes a normal distribution with mean 

µ and variance �2.

They compared the results from the HSM model with 

those from an AR(1) model and found that the dry 

spell persistence identifi ed by the HSM model produced 

higher drought risks. The Sydney rainfall data strongly 

supported the assumption of a two state climate model 

with the average residence time similar to the quasi-

periodicity of the ENSO phenomenon. 

2.2 Annual rainfall data at a number of sites

Annual rainfall at a number of sites can be generated 

by using a multi-site model (Young and Pisano, 1968).

 X
t
 = A X

t-1
 + B ε

t
   (2.8)

where X
t
 =  (m x 1) vector of standardised annual 

rainfall at m sites

 �
t
 =  (m x 1) vector of random deviates with 

zero mean and unit variance

 A, B =  (m x m) matrices of constant 

coeffi cients to preserve the cross 

correlations.

The matrices A and B are obtained from:

 A = M
1
 M

0

-1    (2.9)

 BBT = M
0
 – M

1
 M

0

-1 M
1

T (2.10)

where M
0
 and M

1
 are respectively the lag zero and lag 

one cross correlation matrices. 

If the annual rainfall data is skewed, then they can 

be normalised using a 3 parameter log normal 

transformation. The parameters in the log domain are 

obtained by using the Matalas moment transformation 

equations (Matalas, 1967).

If the annual rainfall data are not serially correlated, 

then A = 0 and the model becomes

 X
t
 = B ε

t
 (2.11)

Pegram and James (1972) and Hipel (1985) claim that 

the lag one cross correlations are not that important 

and could be ignored. This simplifi es the correlation 

matrices and the solutions to A and B. Thyer and 

Kuczera (1999) reported that work was in progress in 

extending the HSM model for multi-site and we are not 

aware of any outcome.

2.3 Monthly rainfall data at a site

Srikanthan and McMahon (1985) recommended the 

method of fragments for the generation of monthly 

rainfalls. The observed monthly rainfall data are 

standardised year by year so that the sum of the 

monthly rainfalls in any year equals unity. This results 

in n sets of fragments of monthly rainfalls from a 

record of n years. The generated annual rainfalls are 

disaggregated by selecting a set of fragments at random 

and multiplying the generated annual rainfall by each of 

the 12 fragments to give 12 generated monthly rainfalls. 

A major limitation of this procedure is that the monthly 

correlation between the fi rst month of a year and the 

last month of the previous year will not be preserved.

Porter and Pink (1991) reported that the use of the 

method of fragments resulted in the conspicuous 

repetition of monthly patterns when generating data 

much longer than the historical data. They proposed 

to obtain the monthly fragments from a generated 

monthly fl ow sequence. It appears that the monthly 

values were generated independently at each site. Each 

generated annual rainfall was disaggregated using the 

monthly fragments from the generated monthly rainfall 

for which the generated annual rainfall is closer to 

the annual value obtained from the generated monthly 

rainfalls. This overcomes the problem of repetition but 

does not preserve the monthly correlation between the 

fi rst month of a year and the last month of the previous 

year.
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Maheepala and Perera (1996) proposed a modifi cation 

to the Porter and Pink (1991) model which allows the 

preservation of monthly correlation across consecutive 

years. The modifi ed model is described in the following 

steps.

Step 1 Generate a monthly rainfall series using a 

suitable monthly data generation model such 

as the Thomas-Fiering model.

Step 2 Generate an annual rainfall series using a 

suitable annual data generation model.

Step 3 Disaggregate the generated annual rainfall in 

Step 2 using the monthly fragments from Step 

1. The appropriate monthly fragments for a 

given year, k, is selected by considering the 

closeness of the generated annual rainfall data 

and the monthly rainfall for the last month of 

the previous year of the already disaggregated 

data and the generated monthly data. This is 

achieved by selecting the monthly fragments 

of a year, i, in the generated monthly series 

that produces a minimum value for (�
i
 + �

i
) 

where �
i
 and �

i
  are defi ned below:

  

 (2.12)

  

  

 (2.13)

where x
k
 = generated annual rainfall for year k

 s
x
 = standard deviation of the annual rainfall

 y
k-1

 = disaggregated monthly rainfall for the 

last month for year k-1

 s
y
 = standard deviation of the monthly rainfall 

for the last month of the year

They have compared this modifi ed procedure with the 

above two methods of fragments, which use historical 

and synthetic fragments using streamfl ow data from 5 

rivers in Victoria. The results showed that the modifi ed 

model was able to preserve the monthly correlations 

across consecutive years. The method used for the 

generation of synthetic monthly fl ows is not clear from 

Maheepala and Perera (1996). 

Since rainfall data is less variable and has smaller 

skewness than streamfl ow data, the extended 

disaggregation scheme proposed by Mejia and Rousselle 

(1976) can be used to disaggregate the generated annual 

rainfall (X) into monthly rainfall (Y).

 Y = AX + Bε + CZ (2.14)

where  

 Z =  a column matrix containing as many 

monthly values from the previous year 

as are desired

 A, B, C = coeffi cient matrices

Lane (1979) has developed an approach which 

essentially sets to zero several parameters of the model 

which are not important. The model considers one 

month (�) at a time and the model equation is written 

as:

 y
t,τ = aτxt

 + bτε + cτyt,τ-1
 (2.15)

The seasonal values are then adjusted to match the 

annual values.

2.4 Monthly rainfall data at a number of sites

Monthly rainfall data at a number of sites can be 

generated by disaggregating the generated annual 

rainfall using the method of fragments (Srikanthan et 

al 1985), the method of synthetic fragments (Porter 

and Pink, 1991) or the modifi ed method of synthetic 

fragments  (Maheepala and Perera 1996). In the last 

method, �
i
 and �

i
  are defi ned as:

 (2.16)

  

 (2.17)

where j refers to the site and N is the number of sites.
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The extended model developed by Mejia and Rousselle 

(1976) can be used to disaggregate the generated annual 

fl ows to monthly fl ows.

 Y = AX + Bε + CZ (2.18)

where 

 Z = a column matrix containing as many 

monthly values from the previous year 

as are desired

 A, B, C = coeffi cient matrices

The coeffi cient matrices are estimated from:

A = (S
yx

 – S
yz

S
zz

S
zx

)(S
xz

S
zz

S
zx

)-1 (2.19)

  

B = (S
yz

 – AS
xz

)S
zz

 (2.20)

  

BBT = S
yy

 – AS
xx

S
zz

AT – AS
xz

CT – CS
zx

AT – CSzzCT

 (2.21)

or equivalently,

    BBT = S
yy

AS
xy

 − CS
zy

 (2.22)

Here again, the condensed form of the model developed 

by Lane (1979) can be used at the expense of not 

preserving some of the cross correlations. The model 

equation for month � is written as:

 Y
t,τ 

= AτXt
 + Bτε + CτYt,τ-1

 (2.23)

The coeffi cient matrices are estimated from

Aτ = [S
yx

(τ,τ) – S
yy

(τ,τ-1)S
yy

(τ–1,τ–1)S
yx

(τ–1,τ)] 

  

[S
xx

(τ,τ) – S
xy

(τ,τ–1)S
yy

(τ–1,τ–1)S
yx

(τ–1,τ)]-1 (2.24)

Ct = [S
yy

(τ,τ–1) – AτSxy
(τ,τ–1)]S

yy
(τ–1,τ–1) (2.25)

BτBτ = S
yy

(τ,τ) – AτSxy
(τ,τ) – CτSyy

(τ–1,τ) (2.26)

One of the main drawbacks with the disaggregation 

approach is the large number of parameters that need 

to be estimated from the historical data. The number of 

parameters in the model for the generation of monthly 

data at N sites is 156N2 for the basic (Valencia and 

Schaake, 1973), 168 N2 for the extended (Mejia and 

Rousselle, 1976) and 36N2 for the condensed (Lane 

1979) schemes. Salas et al (1980) gives a parsimony 

guide for disaggregation modelling.

Table 1. Parsimony guide for disaggregation modelling (Salas et al, 1980)

 Ratio ( R ) of observations to parameters Comment

 R < 1  Impossible

 1 < R < 3  Foolish 

 3 < R < 5 Poor 

 5 < R < 10  Fair 

 10 < R < 20  Good 

 20 < R   Very good

-1 -1

-1

-1

-1

-1

-1

T
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2.5 Summary

If we ignore the year to year variations or long term 

persistence, models are available to generate annual and 

monthly rainfall. From past experience, in the case of 

annual rainfall, a lag one Markov model is adequate for 

single site or multi sites. The estimation of parameters 

under a Bayesian frame work needs to be investigated 

to quantify the parameter uncertainties. In the case of 

monthly rainfall, the procedures of Porter and Pink 

(1991) and Maheepala and Perera (1996) appear to 

be cumbersome and it is not clear how the synthetic 

monthly data were generated. The modifi ed 

disaggregation scheme proposed by Mejia and Rousselle 

(1976) is an elegant option.  If the number of parameters 

in this scheme is too many, the condensed version of 

Lane (1979) should be investigated. For the months 

with a high coeffi cient of variation (> 1), appropriate 

transformation will be used to eliminate the generation 

of negative values. If we are not using the method of 

fragments, generating the right amount of zero monthly 

rainfall will be a problem. It is not clear how this aspect 

was handled by Porter and Pink (1991) and Maheepala 

and Perera (1996).
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3 Daily Rainfall Data

Long sequences of daily rainfall are increasingly 

required, not only for hydrological purposes, but also 

to provide inputs for models of crop growth, landfi lls, 

tailing dams, land disposal of liquid waste and other 

environmentally sensitive projects. Rainfall is generally 

measured at daily time scale and this forms the basis 

for monthly and annual rainfall. Because of this basic 

nature, modelling of daily rainfall process has attracted 

a lot interest in the past. The generation of daily rainfall 

at a site is reviewed fi rst, followed by a review of the 

generation of daily rainfall at a number of sites.

3.1 Daily rainfall data at a site

The daily rainfall data generation models can be broadly 

classifi ed into four groups, namely, two-part models, 

transition probability matrix models, resampling models 

and time series models. 

3.�.� Two-part models

Most stochastic models of daily rainfall consist of two 

parts, a model for the occurrence of dry and wet days 

and a model for the generation of rainfall amount on wet 

days. The seasonal variation in rainfall is an important 

factor and several approaches have been used to deal 

with seasonality: assume that parameters vary as a 

step function for each month, season or as a periodic 

function such as Fourier series to provide daily variation 

of parameters.

Rainfall occurrence models

Models of rainfall occurrence are of two main types, 

those based on Markov chains and those based on 

alternating renewal processes. 

Markov chains

Markov chains specify the state of each day as ‘wet’ 

or ‘dry’ and develop a relation between the state of the 

current day and the states of the preceding days. The 

order of the Markov chain is the number of preceding 

days taken into account. Most Markov chain models 

referred in the literature are fi rst order (Gabriel and 

Newman, 1962; Caskey, 1963; Weiss, 1964; Hopkins 

and Robillard, 1964; Feyerherm and Bark, 1965, 1967; 

Lowry and Guthrie, 1968; Selvalingam and Miura, 

1978; Stern, 1980; Garbutt et al, 1981; Richardson, 

1981 Stern and Coe, 1984). Models of second or higher 

orders have been studied by Chin (1977), Coe and Stern 

(1982), Gates and Tong (1976), Eidsvik (1980) and 

Singh et al (1981). The results varied with the climate 

characteristics of the rainfall stations investigated, 

with the statistical tests used and with the length of 

record. Katz (1981) derived the asymptotic distribution 

of the Akaike’s information criterion (AIC) estimator 

and showed that the estimator is inconsistent. The 

Bayesian information criterion (BIC) proposed by 

Schwarz (1978) was shown to be consistent and 

asymptotically optimal.

Jimoh and Webster (1996) determined the optimum 

order of a Markov chain model for daily rainfall 

occurrences at 5 locations in Nigeria using AIC and 

BIC. The AIC consistently gave higher order for the 

Markov chain than the BIC. The optimum order was also 

investigated by the generation of synthetic sequences 

of wet and dry days using zero-, fi rst- and  second-order 

Markov chains. They found that the fi rst-order model 

was superior to the zero-order model in representing the 

frequency distribution of wet and dry spells and there 

was no discernible differences between performances 

of the fi rst- and second-order models. It was concluded 

that caution is needed with the use of AIC and BIC for 

determining the optimum order of the Markov model 

and the use of frequency duration curves can provide a 

robust alternative method of model identifi cation. 

Jimoh and Webster (1999) investigated the intra-annual 

variation of the Markov chain parameters for 7 sites in 

Nigeria. The found that there was a systematic variation 

in P
01

 (probability of a wet day following a dry day) as 

one moves northwards and limited regional variation 

in P
11

.

A general conclusion is that a fi rst order model is 

adequate for many locations but second or higher order 

model may be required at other locations or during 

some times of the year. 
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Alternating renewal process

The alternating renewal process consists of alternating 

wet and dry spells which are assumed independent.  

The distributions may be different between wet and dry 

spells. Distributions investigated include the logarithmic 

series (Williams, 1947), a modifi ed logarithmic series 

(Green, 1964), truncated negative binomial distribution 

(Buishand, 1977), and the truncated geometric 

distribution (Roldan and Woolhiser, 1982). Roldan and 

Woolhiser (1982) compared the alternating renewal 

process with truncated geometric distribution of wet 

sequences and truncated negative binomial distribution 

of dry sequences with a fi rst order Markov chain. For 

fi ve US stations with 20-25 years of record lengths, 

the fi rst order Markov chain was superior to the 

alternating renewal process according to the Akaike 

information criterion (Akaike, 1974). The parameters 

of the distributions were either assumed to be constant 

within seasons or to vary according to Fourier series. 

One of the disadvantages of the alternating renewal 

process is that the seasonality is diffi cult to handle. 

The starting day of the sequence is usually used to 

determine the season to which the sequence belongs.

Small and Morgan (1986) derived a relationship between 

a continuous wet-dry renewal model with gamma 

distributed dry intervals and a Markov chain model for 

daily rainfall occurrence. The Markov process model is 

shown to provide a good representation in certain parts 

of the United States while in other areas, where the 

Markov model in inappropriate due to event clustering 

or other phenomena, the gamma model provides an 

improved characterisation of the relationship between 

continuous and discrete rainfall occurrence.

Foufoula-Georgiou and Lettenmaier (1987) developed 

a Markov renewal model for rainfall occurrences in 

which the time between rainfall occurrences were 

sampled from two different geometric distributions. 

The transition from one distribution to the other was 

governed by a Markov chain. Smith (1987) introduced 

a family of models termed Markov-Bernoulli processes 

that might be used for rainfall occurrences. The process 

consists of a sequence of Bernoulli  trials with 

randomised success probabilities described by a fi rst 

order two state Markov chain.  At one extreme the 

model is a Bernoulli process, at the other a Markov 

chain.

A binary discrete autoregressive moving average 

(DARMA) process was fi rst used by Buishand (1978), 

and later by Chang et al (1984) and Delleur et al 

(1989). Buishand found that an alternating renewal 

process was superior to the DARMA model for the data 

from Netherlands but the DARMA model looked more 

promising in tropical and monsoonal areas. Chang et al 

(1984) and Delleur et al (1989) used four seasons for 

two stations in Indiana and found that the fi rst order 

autoregressive or the second order moving average 

model were appropriate for different seasons. Buishand 

(1977) pointed out an important factor that properties 

of the rainfall in New Delhi cannot be preserved by a 

model with constant parameters – stochastic parameters 

are required. This observation may be generally valid 

for regions with monsoonal climates.

Chapman (1994) compared fi ve models, namely, 

Markov chains of orders 1, 2 and 3 (MC1,MC2 and 

MC3), truncated negative binomial distribution (TNBD) 

and the truncated geometric distribution (TGD) with 

separate parameter values for each month using data 

from 17 Australian rainfall stations. Three of the above 

models (MC1, TNBD and TGD) were also compared 

with parameters varying smoothly through out the 

year according to a Fourier series having 0, 1 and 

2 harmonics. The Fourier series representation with 

one harmonic for parameter variation throughout the 

year using MC1 or TGD model was successful for 

higher rainfall stations (Perth, Adelaide, Lerderderg, 

Melbourne and Cowra) in southern Australia. The 

monthly MC2 model was the best fi t for Alice Springs 

PO, Darwin, Broome, Onslow and Bamboo Springs 

(with 20 year record). For the remaining stations (Alice 

Springs Airport, Brisbane, Kalgoorlie, Mackay and 

Monto), the best fi t was obtained with the monthly 

TNBD model. Different record lengths appear to have 

an effect on the selection of the best model, particularly 

when wet and dry spells are considered separately. For 

combined results, different models would be selected 

for the 20 year and 50 year records in 4 out of 10 cases, 

for the 20 and 100 year records in 2 out of 5 cases, 

and for the 50 and 100 year records in 1 case out of 5. 

He concludes that the prospects for regionalisation of 

parameters are poor unless there is a good sample of 

long records.
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Rainfall amount models

Models used for rainfall amounts include the two 

parameter gamma distribution (Jones et al 1972; 

Goodspeed and Pierrehumbert, 1973; Coe and Stern, 

1982; Richardson, 1981; Woolhiser and Roldan, 1982), 

mixed exponential distribution (Woolhiser and Pegram, 

1979; Woolhiser and Roldan, 1982, 1986), a skewed 

normal distribution (Nicks and Lane, 1989) and a 

truncated power of normal distribution (Bardossy and 

Plate, 1992; Hutchinson et al 1993). Cole and Sherriff 

(1972) applied separate models to rainfalls for a solitary 

wet day, the fi rst day of a wet spell and the other days 

of a wet spell, while Buishand (1978) related the mean 

rainfall amount on a wet day to its position in a wet 

spell such as a solitary wet day, wet day bounded on 

one side by a wet day and wet day bounded on each 

side by a wet day. 

Chin and Miller (1980) examined the possible 

conditional dependence of the distribution of daily 

rainfall amounts on the occurrence of rainfall on the 

preceding day using 25 years of daily rainfall data 

at 30 stations in the contiguous United States. It was 

concluded that except for the winter season in the 

Pacifi c Northwest, the distribution of daily rainfall did 

not depend on whether the preceding day was wet or 

dry.

Chapman (1994) compared the following fi ve models 

for rainfall amounts: the exponential (one parameter), 

the mixed exponential (three parameters), the gamma 

(two parameters), a skewed normal (three parameters), 

and the kappa distribution (two parameters). Based on 

the AIC, the ranking of the models was consistent, the 

best being the skewed normal distribution, followed 

by the mixed exponential, the kappa, the gamma, and 

last the exponential. There was also consistency in the 

model selected for different groups of data (solitary 

wet days, fi rst day of a wet spell etc).  He observed little 

variation in the coeffi cient of variation between different 

groups and relatively little between months. Yevjevich 

and Dyer (1983) suggested that the latter feature may 

be a general characteristic of daily rainfall series and 

this could lead to a signifi cant parsimony in the number 

of parameters to model seasonal variations.

Wang and Nathan (2000) developed a daily and monthly 

mixed (DMM) algorithm for the generation of daily 

rainfall. Daily rainfall data is generated month by month 

using the normal two part model using two sets of 

parameters for the gamma distribution: one estimated 

from the daily rainfall data and the other from monthly 

rainfall data. The monthly total is obtained by summing 

the daily values generated from the monthly gamma 

parameters and adjusted for serial correlation. The 

generated daily rainfalls from the daily gamma 

parameters are linearly scaled to match the serially 

correlated monthly rainfalls. Results for the Lake 

Eppalock catchment rainfall and for six other sites 

around Australia showed that the DMM algorithm 

reproduced the mean, coeffi cient of variation and 

skewness of daily, monthly and annual rainfall. The 

results were examined in detail for the Lake Eppalock 

catchment and found that the algorithm worked well 

in reproducing the mean, coeffi cient of variation and 

skewness of monthly maximum daily rainfall, but not 

as well for the annual maximum rainfall. For the other 

six sites, the algorithm worked well in reproducing the 

mean and coeffi cient of variation, but not as well the 

skewness of the annual maximum daily rainfall.

3.�.2 Transition probability matrix models

Allan and Haan (1975) used a multi-state (7 x 7) Markov 

chain model and employed a uniform distribution for 

each of the wet states except for the last, for which an 

exponential distribution was used. Due to the lack of 

suffi cient number of data items in the last class for each 

month, the values in this class were lumped together 

and only one value of the exponential parameter was 

estimated to generate the rainfall depth in the last 

class for all the months. Selvalingam and Miura (1978) 

modifi ed the above procedure by having twelve 

parameters for the exponential distribution, but they 

obtained the parameter empirically by trial and error 

until the model adequately reproduced the daily 

maximum monthly rainfalls. Srikanthan and McMahon 

(1985) used a linear distribution for the intermediate 

classes and Box-Cox transformation for the last state. 

The number of states in each month was varied to 

obtain adequate number of data items in the last state.
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Chapman (1994) compared the Srikanthan and 

McMahon model with the best selected rainfall 

occurrence and amount models and found that the 

latter performed better than the former in 5 out of 15 

twenty year records, for 2 of the 10 fi fty year records 

and for none of the 100 year records. He also found 

that the Srikanthan and McMahon model, which does 

not use any wet day classifi cation, was successful in 

reproducing the mean, standard deviation, skew and the 

number of wet days in each class.

Boughton (1999) observed that the TPM model 

underestimates the standard deviation of annual rainfall 

and proposed an empirical adjustment to match the 

observed standard deviation. The adjustment factor (F) 

is obtained by trial and error until the standard deviation 

of the generated and observed annual rainfall matches. 

The generated daily rainfall in each year is multiplied 

by the following ratio.

 Ratio
i
 = {M + (T

i
 – M)F}/T

i
  (3.1)

where M =  the observed mean annual rainfall

 T
i
 =  the generated annual rainfall for year i.

In this model, the log-Boughton distribution was used 

in place of the Box-Cox trabsformation for the largest 

state in the TPM. The parameter of the log-Boughton 

distribution was estimated by a trial and error 

procedure.

3.�.3 Resampling models

Lall et al (1996) developed a non-parametric wet-dry 

spell model for re-sampling daily rainfall at a site. All 

marginal, joint and conditional probability densities of 

interest (dry spell length, wet spell length, precipitation 

amount, and wet spell length given prior to dry spell 

length) are estimated non-parametrically using at site 

data and kernel probability density estimators. The 

model was applied to daily rainfall data from Silver 

Lake station in Utah and the performance of the model 

was evaluated using a number of performance measures. 

The model reproduced the wet day preciptiation, wet 

spell length and dry spell length well.

Rajagopalan et al (1966) presented a non-homogeneous 

Markov model for generating daily rainfall at a site. 

The fi rst-order transition probability matrix was 

assumed to vary smoothly day by day over the year. 

A kernel estimator was used to estimate the transition 

probabilities through a weighted average of transition 

counts over a symmetric time interval centred at the day 

of interest. The rainfall amounts on each wet day were 

simulated from the kernel probability density estimated 

from all wet days that fall within a time interval centred 

on the calendar day of interest over all the years of 

available data. Application of the model to daily rainfall 

data from Salt Lake City, Utah showed that the wet- and 

dry-spell attributes and the rainfall statistics were well 

reproduced at the seasonal and annual time scales.

Sharma and Lall (1997) used a nearest neighbour 

conditional bootstrap for resampling daily rainfall for 

Sydney. The dry spells were conditioned on the number 

of days in the previous wet spell and the wet spells 

were conditioned on the number of days in the previous 

dry spell. The rainfall amounts were conditioned on 

two variables: the rainfall amount on the previous day 

and the numbr of days from the start of the current 

spell. Results from the model showed the ability of the 

model to simulate sequences that are representative of 

the historical record.

A limitation of the non-parametric density estimation 

approach used here is the rather limited extrapolation of 

daily rainfall values beyond the largest value recorded. 

The simulations from the k-nearest neighbour method 

do not produce values that have not been observed 

in the historical data and this is a major limitation 

if extreme values outside the available record are of 

interest (Rajagopalan and Lall, 1999). Sample sizes 

needed for estimating the pdf of interest are likely to be 

larger than for parametric estimation. On the question 

of regionalisation and portability of the method, the 

non-parametric approach clearly enjoys the broader 

applicability than its parametric competitors. On the 

other hand, it may be less amenable to direct 

regionalisation as is done in terms of the parameters of 

a parametric model.

3.�.4 Time series models

In this approach, time series models similar to stream 

fl ow data generation are used to generate daily rainfall 

data. Adamowski and Smith (1972) used a fi rst order 

Markov model to generate standardised daily rainfall 

data. The major problem with this procedure is the 

cyclical standardisation which occurs if there is a large 
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number of zero daily values. A truncated power of 

normal distribution has been suggested to model daily 

rainfall (Hutchinson et al 1993; Hutchinson, 1995). The 

underlying normal distribution can be put into a simple 

fi rst order autoregressive scheme to account for the 

day to day persistence of wet and dry days. The lag 

one autocorrelation can be specifi ed by matching the 

conditional probability P(D|D). The correlations in the 

amounts of rainfall on successive wet days from 

this model were found to be much larger than the 

observed correlations  in the rainfall, and could to a fi rst 

approximation be ignored (Hutchinson, 1995). Such 

systematic differences between correlations based on 

occurrence and intensity have not been recognised in 

the existing applications such as Bardossy and Plate 

(1992).

3.�.5 Conditional daily rainfall models

Stochastic models of daily rainfall with annually varying 

parameters usually do not preserve the variance of 

monthly and annual precipitation (Buishand, 1977; 

Zucchini and Adamson, 1984; Woolhiser et al, 1988; 

Boughton, 1999). This underestimation may be due 

to real long term trends in rainfall, changes in the 

data collection techniques or in rain gauge exposure, 

model inadequacies, and/or the existence of large-

scale atmospheric circulation patterns that do not 

exhibit annual periodicities (Woolhiser, 1992). One such 

phenomenon that has attracted recent scientifi c interest 

is the Southern Oscillation (SO). Woolhiser (1992) 

proposed a technique to identify the effects of ENSO 

on rainfall. The rainfall occurrence was described by 

a fi rst order Markov chain and the mixed exponential 

distribution was used for the rainfall amount on wet 

days.

Let 

 

      (3.2)

p
ij
(t) = P[X(t)=j|X(t-1)=i] i, j = 0, 1 (3.3)

Let Y(t) be the rainfall on a wet day t and the random 

variable U(t) = Y(t) – d be distributed as a mixed 

exponential distribution.

 f
t
(u) =  �(t)/�(t)exp{-u/�(t)} + 

 {1 - �(t)}/	(t)exp{-u/	(t)}  (3.4)

where d is a threshold, 0 < �(t) < 1, 0 < �(t) < 	(t)

The mean µ(t) is given by

 µ(t) = �(t) �(t) + {1 - �(t)} 	(t)  (3.5)

To account for the seasonal variability of the parameters 

of the model, the parameters p
00

(t), p
10

(t), �(t), �(t) and 

µ(t) are written in the polar form of a fi nite Fourier 

series:

      (3.6)

where i  =  1, 2, .., 5

 G
i
(t) =  the value of the ith parameter on day t 

 m
i
  =  the maximum number of harmonics

 G
i0
 =  the mean value of the ith parameter

 C
ik
 =  the amplitude of the kth harmonic

 

ik
 =  the phase angle of the kth harmonic for 

the ith parameter

To avoid imposing constraints, the logit transform of 

the transition probabilities are fi tted with Fourier series 

(Stern and Coe, 1984):

g
ij
(t) =  log{p

ij
(t)/[1-p

ij
(t)]}    -∝  < g

ij
(t) < +∝  (3.7)

The periodic parameters are perturbed by a lagged 

linear function of SOI.

 G’
i
(t) = G

i
(t) +b

i
S(t-�

i
)   (3.8)

where b
i
 and �

i
 are parameters to be estimated from the 

data and S(t) is the SOI on day t. Both the parameters 

of the Markov chain and the mean, µ(t), of the mixed 

exponential distribution were affected by the SOI. A 

monthly SOI series was used, so that S(t) is represented 

as a step function.
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Data from 11 stations in Arizona, Idaho and Oregon 

were analysed by Woolhiser (1992). Perturbing the 

periodic logits of the transition probabilities resulted 

in a minimum AIC for six stations, with the Arizona 

stations being most strongly affected. The signs of 

the coeffi cients are fairly consistent with previous 

studies, with a negative SOI leading to more rainfall 

in the Southwest and the opposite effect in the Pacifi c 

Northwest. The perturbed mean precipitation resulted 

in the minimum AIC for all stations and the sign of the 

coeffi cient was consistent with expectations except for 

the station Bose, ID. The most common lag was about 

90 days.

Woolhiser et al (1993) applied the above procedure to 

27 stations in California, Nevada, Arizona and New 

Mexico. Perturbations of the logits of the dry-dry 

transition probabilities resulted in statistically signifi cant 

improvements in the log likelihood functions for 23 

stations and perturbations of the mean daily rainfall 

resulted in signifi cant increases for 18 stations. The 

most common lag identifi ed was 90 days, suggesting 

the possibility of conditional simulations of daily 

precipitation. Even though the simulated rainfall 

sequences with model parameters perturbed by the SOI 

exhibited greater monthly and annual variances than 

those simulated with purely periodic parameters, these 

variances were still underestimated.

Hay et al (1991) presented a method of modelling 

rainfall as a function of weather type. A Markov-based 

model was used to generate temporal sequences of 

six daily weather types: high pressure, coastal return, 

maritime tropical return, frontal maritime tropical return, 

cold frontal overrunning and warm frontal overrunning. 

Transitions from one weather type to another weather 

type was modelled using a Markov chain. The length 

of time, in days, a given weather type persisted was 

modelled by a geometric distribution. Observed monthly 

probabilities of rainfall for each weather type were used 

to classify a day as wet or dry. The rainfall amounts 

were modelled using the product of an exponential 

random variable and a uniform random variable as 

an exponential distribution alone underestimated the 

variance of the daily rainfall. The rainfall amounts were 

modelled as:

 R = [I
i
(-log(U)](1 + e)   (3.9)

where  I
i
 =  the mean intensity of rainfall for wet 

days for the given weather type i

 U =  a uniform random variable between 0 

and 1

 e =  the error term, a uniform random 

variable between –1 and 1

When there were less than 10 days of recorded rainfall 

for a given weather type and month, the rainfall amounts 

were modelled using:

 R = I
i
(1 + e) (3.10)

A Monte Carlo simulation consisting of fi fty replicates 

of 30 year sequences reproduced daily weather type and 

precipitation sequences similar to those of the observed 

record.

Wilks (1989) has developed a daily rainfall model 

in which the parameters of the  Markov chain and 

the gamma distribution were estimated separately for 

months in the lower 30% (dry), middle 40% (near 

normal) and the upper 30% (wet) of the distribution 

of monthly rainfall. The transitions among dry, near 

normal and wet months were modelled by a three state 

fi rst order Markov chain. This conditional model was 

compared to the usual unconditional model derived 

from the entire data using data from 10 North American 

stations. It was found that the unconditional models 

produced too few dry and wet months compared to the 

observations, while the conditional model reproduced 

the climatological distribution of the monthly rainfall. 

Wilks used generalised likelihood ratio tests to show 

that the increase from four to ten parameters per month 

was justifi ed by the data.

3.�.6 Uncertainty in model parameters

Chaouche and Parent (1999) used a Bayesian framework 

to estimate the uncertainties of the parameters of a daily 

rainfall model utilising a Markov chain and gamma 

distribution. They used 69 years of data from Dedougou, 

a station in the Sudan-Sahel zone of Burkina-Faso, but 

modelled only the rainy season (day 100 to day 300). 
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A Fourier series with 2 harmonics was used to model 

the logits of the Markov chain probabilities and this 

resulted in 10 parameters. The log likelihood of the 

transition probabilities is given by:

 (3.11)

where n
ij
(t) is the number of transitions between days 

t-1 and t from the state i to the state j.

The shape parameter (�) of the gamma distribution was 

assumed constant throughout the season and only the 

scale parameter (�
t
) was allowed to vary. A Fourier 

series with 2 harmonics was fi tted to the scale parameter 

resulting in fi ve parameters for generating rainfall 

amounts. 

 (3.12)

The log likelihood for the mean depth of rainfall is 

given by:

 

 (3.13)

The 16 (10+1+5) model parameters were estimated 

within a Bayesian framework using the Markov chain 

Monte Carlo simulation with the Metropolis-Hastings 

algorithm (Gelman et al 1995).

3.�.7 Regionalisation of daily rainfall model  

 parameters

Richardson and Wright (1984) have computed the 

monthly transitional probabilities for a two state Markov 

chain based on 20 years of data for each of the 31 

locations in the United States.  Geng et al (1986) 

developed empirical equations for the parameters of a 

two-part model using the data from the Netherlands 

(Wangeningen), the Phillipines (Los Banos) and the 

United States (Colombia, Boise, Miami, Phoenix and 

Boston).

 P(W|D) = 0.75 P(W) (3.14)

 P(W|W) = 0.25 + 0.75 P(W) (3.15)

 � = -2.16 + 1.83 µ
w
 (3.16)

 � = µ
w
 /� (3.17)

They proposed that these empirical equations allow 

rainfall simulation models to be used for crop growth 

studies in many areas where too little weather data were 

available.

Woolhiser and Roldan (1986) investigated the seasonal 

and regional variability of parameters of stochastic daily 

precipitation models for South Dakota, USA. Fourier 

series were used to describe the seasonal variation 

of the fi ve parameters of the Markov chain mixed 

exponential model fi tted to 16 rainfall stations. A 

concise description of seasonal variations of parameters 

was obtained by using from 15 to 27 coeffi cients. 

Semivariograms calculated for the mean Markov chain 

parameters showed a nugget effect. The large nugget 

variance was attributed to real differences in 

precipitation regime and to inconsistencies in the records 

due to methodological differences affecting small 

precipitation amounts. Time of observation appeared 

to be an important factor. They suggested that rainfall 

records for use in regional parameter mapping must 

be carefully screened to ensure consistency of data. 

The model parameters for four test stations were 

more closely estimated by arithmetic averages of 

six nearby stations than by three other interpolation 

techniques, including nearest neighbour, spline fi tting 

and linear interpolation. They also found that the 

interpolated parameters for the four test sites were 

signifi cantly different from parameters estimated from 

rainfall records.

3.�.8 Summary

Models for generating daily rainfall are well developed 

and a great deal of progress has been made recently 

in developing techniques for parameter estimation. The 

transition probability method appears to preserve most 

of the characteristics of daily, monthly and annual 

characteristics and is shown to be the best performing 

model (Chapman, 1994). The main drawback with this 
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method is the large number of parameters, which makes 

it almost impossible to regionalise the parameters. 

The two part model has been shown to perform well 

in other parts of the world by many researchers. A 

shortcoming of the existing models is the consistent 

underestimation of the variances of the simulated 

monthly and annual totals. Recently, Wang and Nathan 

(2000) constrained a two part model within a monthly 

model and it appears to perform well. Also, Boughton 

(1999) has adjusted the generated daily rainfalls by a 

trial and error procedure to match the variance of the 

observed annual rainfall. As an alternative, conditioning 

model parameters on monthly amounts or perturbing 

the model parameters with the SOI result in better 

agreement between the variance of the simulated and 

observed annual rainfall and these approaches should 

be investigated.

3.2 Daily rainfall data at a number of sites

If hydrological and land management changes are 

required simultaneously across larger regions, then 

the spatial dependence between the weather inputs 

at different sites have to be accommodated. This is 

particularly important to the simulation of rainfall, 

which displays the largest variability in time and space. 

The model used to generate daily rainfall at a number 

of sites can be broadly grouped into three categories, 

conditional models, extension of Markov chain  models 

and random cascade models.

3.2.� Conditional models

Zucchini and Guttorp (1991) constructed a hidden 

Markov model for the occurrence/nonoccurrence of 

rainfall at N sites by assuming a different probability of 

events at the sites for each of a number of unobservable 

climate states. The climate process is assumed to follow 

a Markov chain. The method was illustrated by applying 

it to data for one site in Washington and to data from 

fi ve sites in the Great Plains, US.

Bardossy and Plate (1991) developed a semi-Markov 

chain model for atmospheric circulation patterns and 

linked to the occurrence of rainfall using transition 

probabilities. Using the model, several series of 

circulation patterns and corresponding rainfall 

occurrences were simulated. Statistics of the simulated 

and the observed data were found to be similar.

Wilson et al (1992) developed a stochastic model of 

weather states and daily rainfall at multiple rainfall 

sites. Four classifi cation techniques were investigated 

to obtain a single index of the regional weather state 

for each day of the study period. Once the weather 

classifi cation scheme was selected, the daily occurrence 

process of the weather states  was modelled by semi-

Markov model with either geometrically or mixed 

geometrically distributed lengths of stay in each weather 

state. A hierarchical modifi ed Polya urn model was 

developed to model the rainfall occurrence at multiple 

stations. The hierarchical structure comes about by 

conditioning the fi rst station on the day’s weather 

class, the second station on the weather class and the 

occurrence/nonoccurrence of rain at the fi rst station 

and so on. The rainfall amounts were modelled using a 

mixed exponential distribution for each station within 

each season within each weather class. The rainfall 

amounts for each station were simulated simultaneously 

based on the correlation structure between the station 

amounts. It was observed that the model was able 

reproduce the probability distribution of daily rainfall 

amounts reasonably well, but with some downward 

bias.

Charles et al (1999) extended the nonhomogeneous 

hidden state Markov model (NHMM) of Hughes et 

al (1999) by incorporating rainfall amounts. The joint 

distribution of daily rainfall at n sites was evaluated 

through the specifi cation of n conditional distributions 

for each weather state (s = 1, …, N). The conditional 

distribution consisted of regressions of inverse normal 

transformed amounts at a give site on rainfall occurrence 

at neighbouring sites within a given radius (	 km). 

An automatic variable selection procedure was used to 

identify the key neighbouring sites. The precipitation 

model can be expressed as

 (3.18)

where the  θ
ks

(i) 

 
are regression parameters, n

i
(	) denotes 

the set of indices of the key neighbouring sites for site i, 

ε
s
  is an error term modelled stochastically by assuming  

ε
s
  ~ N(0,       ), and 

z
s

(i) = Φ-1{F(y
s

(-1))} (3.19)

 

(i)

(i)
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in which � denotes the normal cumulative distribution 

function and F(y
s

(i)) is the empirical distribution function 

of y
s

(i), the rainfall amount on days with 

r(i) = 1.

The above method was applied to a network of 30 daily 

rainfall stations and historical atmospheric circulation 

data in southwestern Australia. A year was divided into 

winter (May – October) and summer (November – 

April) seasons. A six state NHMM was found adequate 

and satisfactorily reproduced the dry and wet spells. 

Only the Spearman  rank inter-site correlations were 

compared for the rainfall amounts. The results for the 

summer season was not presented.

Pegram and Seed (1998) developed a space-time model 

for the generation of daily rainfall in Bethlehem, South 

Africa. The model has two components:

• a climate generator in the form of a 3-state Markov 

chain with periodically varying parameters

• bins of rainfall data (a collection historical rainfall 

dates on which the various types of rain occurred.

The daily weather was classifi ed into three types based 

on the number of rain gauges reporting rainfall.

Table 3.1 Daily weather classifi cation (Pegram and Seed, 1998)

Dry < 3 % gauges report rain

Scattered > 3 % gauges report rain, but < 50 % 

 report > 5 mm rain

General > 50 % gauges report > 5 mm rain

Starting from a known current state, the models fi rst 

determines the state of the following day using the 

transition probabilities. If the state is dry, assign zero 

rainfall to all gauges. If the state is scattered, select from 

the collection of scattered rain days in the appropriate 

month an historical date at random. Look up the set of 

data for that date which in the current model is the mean 

value of rainfall and record it. If the type is general note 

how many general rain days are in the current sequence 

of general rain days and resample the state for the day 

after next. If the current state is general and the next 

one is other than general, select a rain day sequence 

from the sets of runs of 1 to 5 days and record that 

sequence as it occurred historically. The model will 

thus produce a sequence of daily averages of rainfall 

based on historical record. The actual rainfalls that fell 

at all active rain gauges on rain days are obtained from 

the historical data.

Bardossy and Plate (1992) developed a 

multidimensional stochastic model for the space-time 

distribution of daily rainfall using atmospheric 

circulation patterns.

Let A
t
 be the random variable describing the atmospheric 

circulation pattern, taking its values from the set of 

possible patterns {�
1
, …, �

n
}. Let the daily rainfall 

at location u and time t be the random function 

Z(t,u).  Z(t,u) is related to a normally distributed 

random function, W(t,u), through the following 

transformation:

 (3.20)

where � is a positive exponent needed as the distribution 

of rainfall amounts is generally much more skewed 

than the truncated normal distribution. The probability 

of rainfall at time t and point u depends on A
t
:

P[W(t,u) > 0|A
t
 = α

i
] = P[Z(t,u) > 0| A

t
 = α

I
] = p

i
(u)

 (3.21)

The distribution of daily rainfall amount at point u, 

F
i
(z|u) is:

P[Z(t,u) < z| A
t
 = α

I
, Z(t,u) > 0] = F

i
(z|u) (3.22)

The expected daily rainfall at point u for circulation 

pattern �
I
 is

 (3.23)

where f
i
(�|u) is the density function corresponding to 

F
i
(�|u). The expression for the corresponding W(t,u) is

 w
i
(u) = E[W(t,u)| A

t
 = α

I
]
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To simplify the subsequent development, the following 

notation is used.

 W(t) = {W(t,u
1
), …, W(t,u

n
)}

 

 Z(t) = {Z(t,u
1
), …, Z(t,u

n
)}

 w
i
 = { w

i
(u

1
), … , w

i
(u

n
)}

The random process describing W(t) is assumed to be 

a multivariate autoregressive process in the case of a 

persisting atmospheric circulation pattern �
i
:

 W(t) = B
i
[W(t-1)-w

i
)] + C

i
Ψ(t) + w

i
 (3.24)

where B
i
 and C

i
 are (n x n) matrices and 

�(t) = {
(t,u
1
), … , {
(t,u

n
)}.

The matrices B
i
 and C

i
 are related to W(t) through

M
0i
 = E[{W(t) – w

i
}{WT(t) – w

i
}| A

t
 = α

i
] (3.25)

  

M
li

T

 
= E[{W(t–1) – w

i
}{WT(t) – w

i
}| A

t 
= A

t-1 
= α

i
] (3.26)

  

B
i
 = M

li
M

0i

-1 (3.27)

  

C
i
C

i

T = M
0i 

– M
li
M

0i

-1M
li

T

 
 (3.28)

There is no time continuity if atmospheric circulation 

pattern changes at time t.

W(t) = D
i
Ψ(t) + w

i
 (3.29)

  

D
i
D

i

T = M
0i
 (3.30)

The model was applied to the rainfall data recorded 

at 44 stations in the river Ruhr catchment (5000 

km2) using the classifi cation scheme of the German 

weather service. The parameters were estimated from 

the moments of the observed data. It was reported that 

the model reproduced the point and spatial rainfall 

statistics including rainfall covering only part of the 

total area under study.

3.2.2 Extension of single site Markov chain   

 models

Wilks (1998) extended the familiar two part model, 

consisting of a two–state, fi rst-order Markov chain 

for rainfall occurrences and a mixed exponential 

distribution for rainfall amounts, to generate rainfall 

simultaneously at multiple locations by driving  a 

collection of individual models with serially 

independent but spatially correlated random numbers. 

Individual models are fi tted to each of the K sites fi rst. 

The collection of individual site models are driven 

with vectors of uniform [0,1] variates u
t
 and v

t
 whose 

elements, u
t
(k) and v

t
(k) respectively, are correlated 

so that corr[u
t
(k), u

t
(l)] � 0 and corr[v

t
(k), v

t
(l)] � 0, 

and are serially and mutually independent corr[u
t
(k), 

v
t
(l)] = corr[u

t
(k), u

t+1
(l)] = corr[v

t
(k),v

t+1
(l)] = 0. Non-

zero correlations among the elements of u
t
 and v

t
 result 

in intersite correlations between the generated rainfall 

sequences.

Multisite occurrence process

Given a network of K locations, there are K(K - 1)/2 

pairwise correlations that should be maintained in the 

uniform random numbers (u
t
) forcing the occurrence 

process. The uniform variates u
t
(k) can be derived 

from standard Gaussian variates w
t
(k) through the 

transformation

u
t
(k) = Φ[w

t
(k)] (3.31)

where �[.] indicates the standard normal cumulative 

distribution function. Let the correlation between w
t
 for 

the station pair k and l be

ω(k,l) = Corr[w
t
(k), w

t
(l)] (3.32)

Together with the transition probabilities for stations 

k and l, a particular �(k,l) will yield a corresponding 

correlation between the synthetic binary series (X
t
) for 

the two sites.

ξ(k,l) = Corr[X
t
(k), X

t
(l)] (3.33)

Let ξ0(k,l) denote the observed value of �(k,l), which 

has been estimated from the observed binary series 

X
t

0(k) and X
t

0(l) at stations k and l. Hence the problem 

reduces to fi nding the K(K –1) correlations of �(k,l) 
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which together with the corresponding pairs of transition 

probabilities reproduces ξ0(k,l) = �(k,l) for each pair 

of stations. Direct computation of �(k,l) from ξ0(k,l) is 

not possible. In practice, one can invert the relationship 

between �(k,l) and �(k,l) using a nonlinear rootfi nding 

algorithm. Realisations of the vector w
t
 may be 

generated from the multivariate normal distribution 

having mean vector 0 and variance-covariance matrix 

�, whose elements are the correlations �(k,l).

Multisite rainfall amounts process

The probability distributions of rainfall amounts 

conditional on nearby stations being dry have smaller 

means than the corresponding distributions conditional 

on near neighbours being wet. This problem of smooth 

transition between wet and dry areas was referred to as 

spatial intermittence by Bardossy and Plate (1992), who 

point out that failure to address it leads to unrealistically 

sharp transition between wet and dry areas.

The precipitation mean �
1
(k) or �

2
(k) are chosen at 

each location according to the relationship between the 

uniform variate for precipitation occurrence u
t
(k) and 

the mixing parameter �(k).

 (3.34)

where u
t
(k) = �[w

t
(k)]. Because of the strong spatial 

correlation in the w
t
(k), wet locations in proximity to 

areas of rainfall for day t will generally result from u
t
(k) 

smaller but near p
c
(k), so that Eq (3.31) will choose the 

smaller of the two mixed exponential scale parameter 

�
2
(k) for that day. The locations in the heart of a wet 

area on day t are more likely to have been forced by 

a relatively small u
t
(k), in which case Eq (3.31) will 

choose the larger scale parameter �
1
(k). The suppression 

of large rainfall amounts at the fringe of wet regions is 

enhanced by continuously varying the larger of the two 

scale parameters according to

 

  

 (3.35)

After choosing the scale parameter �
1
(k), the rainfall 

amounts are generated from a vector of correlated 

uniform variates v
t
.  As in the rainfall occurrence model, 

it is convenient to obtain the elements of this vector 

from a corresponding realisation of correlated standard 

normal variates z
t
(k) as v

t
(k) = �[z

t
(k)]. This vector 

z
t
 is drawn from a multivariate normal distribution 

with mean 0 and variance-covariance matrix Z, whose 

elements are

 ζ(k,l) = Corr[z
t
(k), z

t
(l)] (3.36)

As was the case of �, direct computation of Z is not 

feasible since the z
t
 are not observed. The correlations 

in Eq (3.33) can be estimated using a similar procedure 

to the one used in the rainfall occurrence model.

The model was applied to a network of 25 rainfall 

stations in New York state with interstation separations 

ranging from 10 to 500 km. The model reasonably 

reproduced various aspects of the joint distribution 

of daily rainfall at the modelled stations. The mixed 

exponential distributions provided substantially better 

fi t than the more conventional gamma distribution and 

found to be convenient for representing the tendency for 

smaller amounts at locations near the edge of the wet 

areas. Means, variances and interstation correlations of 

monthly rainfalls were also well reproduced. In addition, 

the use of mixed exponential rather than gamma 

distribution resulted in closer interannual variability to 

the observed. 

3.2.3 Random cascade models

Jothityangkoon et al (2000) constructed a space-time 

model to generate synthetic fi elds of space-time daily 

rainfall. The model has two components: a temporal 

model based on a fi rst-order, four-state Markov chain 

which generates a daily time series of the regionally 

averaged rainfall and a spatial model based on 

nonhomogeneous random cascade process which 

disaggregates the above regionally averaged rainfall to 

produce spatial patterns of daily rainfall. The cascade 

used to disaggregate the rainfall spatially is a product of 

stochastic and deterministic factors, the latter enables the 

model to capture systematic spatial gradients exhibited 

by measured data. If the initial area (at level 0) 

is assigned an average intensity R
o
 (in mm d-1, as 



COOPERATIVE RESEARCH CENTRE FOR   CATCHMENT HYDROLOGY

20

simulated by the temporal model), this gives an initial 

volume R
o
L

o

2, where L
o
 is the outer length scale. At the 

fi rst level, the initial area is subdivided into 4 subareas 

denoted by ∆i

1 
, i = 1, …, 4. At the second level, each of 

the above subareas is further subdivided into 4 further 

subareas denoted by ∆i

2 
, i = 1, …, 16. When the process 

of subdivision is continued, the volume µ
n
(∆i

n
) in the 

subareas at the nth level of subdivision (∆i

n 
, i = 1,...,2n) 

are given by

 (3.37)

where for each j, i represents the subareas along 

the path to the nth level subareas and the multipliers 

W are nonnegative random cascade generators with 

E[W] = 1. The so-called beta-lognormal model was 

used for the generation of the cascade generators W 

(Over and Gupta, 1994, 1996).

 W = BY (3.38)

where B is a generator from beta model and Y is drawn 

from a lognormal distribution (Gupta and Waymire, 

1993). To include the systematic spatial variation in the 

rainfall, W in (3.29) is modifi ed to include a systematic 

multiplier G.

 W = BYG (3.39)

with the condition that the average value of G over the 

respective subareas is equal to 1 at every discretisation 

step.

The model was applied to a 400 x 400 km region 

encompassing the Swan-Avon River Basin in the 

southwest of Western Australia. The model parameters 

were estimated from 11 years of daily rainfall data 

observed at 490 rain gauges located in the region. 

The generated regionally averaged rainfall was 

disaggregated progressively down to the scale of 12.5 

km. The model was able to reproduce (1) the spatial 

patterns of long term mean daily, monthly and annual 

rainfall; (2) spatial patchiness characteristics of daily 

rainfall, estimated in terms of a wet fraction; (3) 

statistical characteristics relating to storm arrival and 

interarrival times at a selected number of stations; 

and (4) probability distributions and exceedance 

probabilities of rainfall at selected stations for selected 

months. The model underpredicted the mean number 

of wet days and the mean wet spell lengths, especially 

during the winter months. A possible reason given to 

this is the exclusion of space-time correlations in the 

model.

3.3 Summary

From the limited amount of work done in generating 

daily rainfall at a several sites, the approach used by 

Jothityangkoon et al (2000) appears to be promising. 

The approach used by Wilson et al (1992) is hierarchical 

and becomes diffi cult to handle for medium to large 

number of stations. The method of Bardossy and Plate 

(1991) uses truncated power normal distribution and the 

procedure needs to resolve the problem of correlation 

based on rainfall occurrences and intensity. The model 

used for rainfall amounts in Charles et al (1999) is 

not adequate and appears to be very cumbersome. 

The extension of single site chain model to multisites 

(Wilks, 1998) appears to be cumbersome in terms of the 

number of model parameters and the way to estimate 

the parameters. The model used by Pegram and Seed 

(1998) will generate only the rainfall values, which were 

already present in the historical record. At this stage, 

we propose to try the approach used by Jothityangkoon 

et al (2000) to Murrumbidgee catchment.
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4 Climate Data

One major use of climate data in conjunction with 

rainfall data is in computer simulation of hydrological 

and agricultural systems. Rainfall-runoff models like 

those of Boughton (1966), Crawford and Linsley (1966), 

or the HYDROLOG (Porter and McMahon, 1972) 

require evaporation data along with rainfall as input. 

Crop growth models like those of Ritchie (1981) and 

Saxton and Bluhm (1982) require, in addition to rainfall, 

net radiation or evaporation as a measure of energy 

input. In irrigation simulation studies, both rainfall and 

evaporation are also required.

A special characteristic that must be preserved in 

stochastic modelling climate data is the cross correlation 

between variables. The models for generating climate 

data at annual, monthly and daily time intervals are 

reviewed in this section.

4.1 Annual climate data

Annual climate data for a single site can be generated 

by using a multi-site type model (Young and Pisano, 

1968).

 X
t
 = A X

t-1
 + B ε

t
 (4.1)

 

where X
t
 =  (p x 1) vector of standardised annual 

climate data for year t

 �
t
 =  (p x 1) vector of random deviates with 

zero mean and unit variance

 A, B =  (p x p) matrices of constant coeffi cients 

to preserve the cross correlations.

 p =  number of climate variables

The coeffi cient matrices can be obtained from the 

correlation matrices as indicated in the Section 2.2.

Annual climate data at multiple sites (m) can also be 

generated by using Eq (4.1) in which the vector X
t
 

represents the climate data at the m sites for year t.

 4.2 Monthly climate data

Monthly climate data can be obtained by disaggregating 

the generated annual data as mentioned in Section 2.3.

4.3 Daily climate data

4.3.� Daily climate data at a single site

Jones et al (1972) hypothesized that daily temperature 

and evaporation could be obtained from the time of the 

year and the occurrence of rainfall on the both the day 

in question and the preceding day. Daily temperature 

and evaporation were simulated by Monte Carlo type 

sampling from a normal distribution, with parameters 

chosen according to the time of the year and to the 

state of the present and preceding days. The main 

drawback with this procedure is that the skewness, cross 

correlations and autocorrelations of daily temperature 

and evaporation values are ignored.

Edelsten (1976) proposed a similar model with 

additional day states, which depended on temperature as 

well as rainfall, and fi tted a second order Markov model. 

He also incorporated signifi cant cross correlations 

and autocorrelations for minimum and maximum 

temperature. The model adequately simulated most 

of the cross correlations and lag 1 autocorrelations. 

The drawback with this model is the large number of 

parameters needed for a second order Markov model 

(Hutchinson (1987).

Nicks and Harp (1980) generated daily temperature 

and solar radiation data using a fi rst order Markov 

model dependent on the state of the present and 

preceding days. A normal distribution was assumed for 

the temperature and solar radiation whose means and 

standard deviations were conditioned on the type of 

day and month of year. This model can be modifi ed to 

account for the skewness (Srikanthan and McMahon, 

1983), but the modifi ed model will not preserve the 

cross correlations.

Bruhn et al (1980)  presented a parsimonious model 

which modelled, on a monthly basis, only those cross 

correlations and lag one autocorrelations which were 

found to be signifi cant. The maximum and minimum 

temperatures were conditioned on the wet/dry status of 

the preceding day only, while the solar radiation was 
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conditioned on the wet/dry status of the present day 

only. The normal distribution was used for all cases 

since only solar radiation on dry days appeared to 

deviate signifi cantly from normality.

In order to reduce the number of parameters, Larsen 

and Pense (1981) fi tted three parameter sine curves to 

the mean daily maximum and minimum temperatures 

conditioned on the wet/dry state of the present day. 

The residuals of these two variables from their mean 

values for the two types of days were modelled by two 

bi-variate normal distributions. A gamma distribution 

for dry days and a beta distribution for wet days 

were used to model differences of solar radiation from 

the theoretical clear day values, which depend on the 

latitude and the time of year. The model did not take 

into account the cross correlations.

Richardson (1981) adopted a weakly stationary 

multivariate model to generate the residual series 

of maximum and minimum temperatures and solar 

radiation. The residuals were assumed normally 

distributed and conditioned only on the state of the 

present day. This model preserves the cross correlations 

and autocorrelations. 

 X
t
 = A X

t-1
 + B ε

t
 (4.2)

 

where X
t
 =  (3 x 3) matrix of standardised daily 

climate data for year t

 �
t
 =  (3 x 1) vector of independent random 

deviates with zero mean and unit 

variance

 A, B  =  (3 x 3) matrices of constant coeffi cients 

to preserve the cross correlations.

 

The matrices A and B are determined using the matrices 

of lag 0 and lag 1 correlations among the three elements 

of X and are assumed to be equal for wet and dry days. 

A common implementation of this algorithm treats A and 

B as being constant in time and equal for all locations in 

the conterminous US (Richardson and Wright, 1984). 

Wilks (1992) claims that this assumption is dubious, 

particularly for those elements depending strongly 

on the cross correlations between solar radiation and 

temperature variables. Using Australian data, Guenni 

et al (1990) also found no general support for the 

constancy of correlation between air temperature and 

solar radiation. The correlations are dependent on season 

and location. They also observed weak dependence 

of temperature on wet or dry status of the day and 

stressed the importance of cloudiness on temperature. 

An alternative, more realistic model, was recommended 

in which seasonal fractional cloudiness is generated fi rst 

and generate temperature and solar radiation conditional 

on the amount of cloud cover for a particular day.

Srikanthan (1985) modifi ed the model given by Eq (4.2) 

so that it is conditional on the present and preceding 

days and to take into account the skewness through 

the Wilson-Hilferty transformation. The model was 

applied to daily evaporation, maximum and minimum 

temperatures and solar radiation data for Melbourne. 

The simulated climate data were found to have similar 

statistical characteristics to those of the historical data.

Racsko et al (1991) fi rst reduced the four dimensional 

weather process (average daily temperature, solar hours, 

rainfall and relative humidity) to a three-dimensional 

sub-process because of the very high negative 

correlation between the negative humidity and the 

temperature. Rainfall was considered as the independent 

variable and modelled fi rst. The wet and dry spells were 

computed on a daily basis but using a characteristic 

interval [d-14, d+14]. The seasonal variation was 

handled through a Fourier series representation. The 

rainfall amounts were grouped into three groups (0.1 – 

0.3, 0.3 – 20, > 20 mm) and modelled with a uniform 

distribution for the fi rst group and an exponential 

distribution for the second group. An average value was 

used the third group. The average temperature and solar 

hours were generated separately for wet and dry days 

using a fi rst order autoregressive model with a normal 

distribution. The cross-correlation between the average 

temperature and solar hours were not modelled. The 

model was applied to two sites in Hungary.

Young (1994) described a multivariate chain model 

for simultaneously simulating daily maximum and 

minimum temperatures and rainfall. The multivariate 

chain model sets up a discriminant space defi ned 

by the daily maximum and minimum temperatures 

and rainfall. Each day of the historical data set is 

represented by a point in discriminant space, located by 



COOPERATIVE RESEARCH CENTRE FOR   CATCHMENT HYDROLOGY

23

its temperatures and rainfall amount. For a given current 

day, the following day is randomly selected from a set 

of nearest neighbours. The model was tested on daily 

data for Tucson and Safford, Arizona, for the period 

1948 – 1988. A slight tendency to underestimate the 

variance of monthly average temperatures was noted. 

The distribution of monthly temperature extremes was 

quite well reproduced with the exception of a tendency 

to underestimate the warmest minimum temperatures 

and the coolest maximum temperatures. There was very 

little difference between the simulated and observed 

distributions of the diurnal range. The median and 90th 

percentile of monthly rainfall were well reproduced. 

A tendency to underestimate the frequency of dry 

months was observed. The frequency of runs of dry 

and wet days of different lengths was found to be not 

signifi cantly different for the observed and simulated 

data.

Rajagopalan et al (1977) presented a nonparametric 

multivariate resampling scheme for generating daily 

weather variables at a site. The model samples the 

original data with replacement while smoothing the 

empirical conditional distribution function. Rainfall 

is generated from the nonparametric wet/dry spell 

model(Lall et al, 1995). A vector of solar radiation, 

maximum temperature, minimum temperature, dew 

point temperature and wind speed is then simulated 

by conditioning on the vector of these variables on 

the preceding day and the rainfall amount on the day 

of interest. The model was applied to 30 years of 

daily weather data at Salt Lake City, Utah, USA. The 

results showed that the means and the quantiles are 

well reproduced. The standard deviation, coeffi cients of 

variation and skewness are not well reproduced as the 

kernel methods infl ate the variance by (1 + h2) where h 

is the band width. This can be corrected by appropriate 

scaling, but this was not carried out. The correlations 

from the simulations and historical data seem to be 

different in a number of cases with the correlations with 

the rainfall being the most poorly reproduced. 

Rajagopalan and Lall (1999) developed a multivariate 

k-nearest-neighbour method with lag one dependence 

for six daily weather variables. This model improves the 

kernel based approach developed above (Rajagopalan 

et al, 1977). A vector of solar radiation, maximum 

temperature, minimum temperature, dew point 

temperature and wind speed on a day of interest is 

resampled from the historical data by conditioning on 

the vector of the same variables (feature vector) on 

the preceding day. The resampling is done from the k 

nearest neighbours in state space of the feature vector 

using a weight function. The model was applied to 30 

years of daily weather data at Salt Lake City, Utah, 

USA and the results were compared with those from 

the application of a multivariate autoregressive (MAR) 

model similar to that of Richardson (1981). The model 

reproduced well the moments, quantiles, dry and wet 

spells and the correlations for all the four seasons. 

However, only the mean values were reproduced by the 

MAR model and the variance, skew and quantiles were 

often biased.

4.3.2 Daily climate data at multiple sites

Provided that the problems in accounting for the 

complicated covariance structure in daily rainfall 

anomalies based on a truncated power of normal 

distribution can be overcome, it is relatively 

straightforward to incorporate other weather variables 

using standard multivariate normal models (Hutchinson, 

1995). This also depends on the adequacy of the normal 

distribution in modelling the remaining variables. 

4.4 Summary

As climate data are less variable than rainfall, but 

correlated among themselves and with rainfall, mutisite 

models have been used successfully to generate annual 

data. The monthly climate data can be obtained by 

disaggregating the generated annual data. On a daily 

time step at a site, climate data has been generated by 

using a  multisite type model conditional on the state of 

the present and previous days. The generation of daily 

climate data at a number of sites remains a challenging 

problem. If daily rainfall can be successfully modelled 

by truncated power normal distribution (Bardossy 

and Plate 1992), then the model data can be easily 

extended to generate daily climate data at several sites 

simultaneously.
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5 Rainfall and Climate Data Under 
 Climate Change Scenario

Concerns over climate change caused by increasing 

concentration of CO
2
 and other trace gases in the 

atmosphere has increased in recent years. A major 

effect of climate change may be alterations in regional 

hydrologic cycles and changes in regional water 

availability. The use of modifi ed water balance models 

offers many advantages in evaluating the regional 

impacts of global climate change (Gleick 1986). The 

main source of climate change projections is the general 

circulation models (GCMs). While current GCMs 

perform reasonably well in simulating the present 

climate with respect to annual and seasonal averages 

over large areas, they are considerably less reliable 

in regional scale information that are necessary for 

hydrological studies. As a result, the climate change 

impact studies had to use a spectrum of climate 

change scenarios. These are generally constructed using 

observed records of temperature and rainfall adjusted to 

refl ect climate changes obtained from monthly average 

GCM results.

5.1 Adjustment of historical data

Most of the early work on the impacts of climate 

change used historical data adjusted for the climate 

change (Lettenmaier and Gan, 1990; Panagoulia 1992). 

The rainfall records were multiplied by the monthly 

precipitation ratios for the CO
2
-doubling and control 

runs. The monthly temperature difference between 

the CO
2
-doubling and control runs was added to 

the historical temperature data. The potential 

evapotranspiration (PET) was computed using the 

Penman equation for two different sets of monthly 

temperature data for the CO
2
-doubling and control 

runs, while all other variables (wind speed, humidity, 

solar radiation etc ) in the Penman equation remained 

unchanged. The monthly differences in PET were 

computed and the resulting differences were then added 

to the historic PET data (Panagoulia 1992). Recently, 

Loaiciga et al (2000) created climate change scenarios 

as described above to investigate the climate change 

impacts on a regional karst aquifer in Texas, USA. 

Mimikou et al (2000) assessed the regional impacts of 

climate change on water resources by modifying the 

synthetic series for climate change effects.

5.2 Adjustment of model parameters

Wilks (1992) presented a method to adapt stochastic 

daily weather generation models for generation of 

synthetic daily time series consistent with assumed 

future climates. The assumed climates were specifi ed 

by the monthly means and variances of rainfall and 

temperature. 

For a two part model rainfall model with gamma 

distribution for rainfall amounts, there are four 

parameters (p
11

, p
01

, �, �). The transition probabilities 

are convenient for Monte-Carlo simulation. However, 

these are replaced by the unconditional probability of a 

wet day (�) and a dependence parameter (d).

 π = p
01

/(1 + p
01

 – p
11

) (5.1)

 d = p
11

 - p
01

 (5.2)

Denoting the parameters for the changed conditions 

with primes, the ratios of the monthly means and 

variances result in:

 (5.3)

 

 (5.4)

The left hand side of the above two equations has the 

known monthly means and variances under the present 

and changed conditions. All the variables without prime 

on the right hand side are known as well. Hence there 

are four unknowns (�, d, �, �) and two equations. 

Two additional constraints are required to solve the 

equations. The nature of these constraints will depend 

on other available information. One of the simplest form 

is to assume no change in the precipitation occurrence 

process so that the only changes are in the gamma 

distribution parameters. Bates et al (1994) set �’ = 

��
2
/�

1
 and d’ = dd

2
/d

1
 where the subscripts 1 and 2 

denote the GCM values for a near by GCM grid cell for 

control and doubled CO
2
 runs respectively.
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The mean daily temperature, T(t), is generally taken as 

the average of the maximum and minimum temperature. 

Hence the mean of the mean daily temperature is given 

by

 µ
T
(t) = {µ

max
(t) + µ

min
(t)}/2  (5.5)

A convenient approach is to defi ne separate annual 

Fourier harmonics for the changes in the maximum 

and minimum temperatures.

µ’
T
(t) - µ

T
(t) = {∆µ

max
(t) + ∆µ

min
(t)}/2

 

        (5.6)

where CX
0
 and CN

0
 are the annual average changes 

in maximum and minimum temperatures respectively 

and CX
1
 and CN

1
 are the corresponding amplitudes 

of the harmonics. The phase angle 
 of the greatest 

temperature increase is assumed to be the same day for 

both maximum and minimum temperature components. 

Since there is a general consensus that warming would 

be greater in winter than summer (Grotch and 

MacCracken, 1991; Schlesinger and Mitchell, 1987), 


 is assumed to be 21 days for both maximum and 

minimum temperatures. Appropriate values for 
 needs 

to be chosen for locations in southern hemisphere. 

The remaining four parameters are estimated from the 

specifi cation of an average annual temperature increase 

at a location, the change in temperature range between 

summer and winter, the change in average diurnal 

temperature range (DR = µ
max

 - µ
min

) in winter and the 

corresponding change in summer.

∆µ = (CX
0
 + CN

0
)/2 (5.7)

∆[µ(JJA) - µ(DJF)] = -0.895(CX
1
 + CN

1
) (5.8)

∆DR(DJF) = CX
0
 - CN

0 
+ 0.895(CX

1
 - CN

1
) (5.9)

∆DR(JJA) = CX
0
 - CN

0 
- 0.895(CX

1
 - CN

1
) (5.10)

The average of the cosine function in Eq (5.6) results in 

the constant 0.895 in the above equations. 

In calculating the variance terms, the nature of daily 

temperature autocorrrelations remains the same in the 

changing climate and this leads to

 (5.11)

The variance of the daily mean temperature is obtained 

form

 (5.12)

where �
max-min

 is the cross correlation between daily 

maximum and minimum temperatures.

For the mean daily minimum (µ’
1j
, j=0,1) and maximum 

µ’
2j
, j = 0,1) temperatures under doubled CO

2
 conditions, 

Bates et al (1994) assumed the following:

 (5.13)

where the superscripts 1 and 2 refer to the control and 

doubled CO
2
 runs. A Fourier series representation with 

up to 3 harmonics was used to model the within year 

variations in temperature.

When parameters are changed in a conditional model, 

certain unanticipated effects can be produced. For 

instance, modifying the probability of occurrence of 

daily rainfall not only changes the mean of daily 

temperature, but its variance and autocorrelation as 

well. Katz (1996) derived the theoretical statistical 

properties of a simplifi ed version of Richardson’s model 

and showed how best to adjust the model parameters to 

obtain the desired climate change. 

5.3 Summary

The greatest uncertainty in modelling climate data 

under climate change conditions is the uncertainty in 

the future climate predictions. The GCMs at present 

are able to provide either scenarios or projections of 

the future climate. If the future climate conditions are 

known with suffi cient accuracy, the stochastic climate 

models available at present can be adapted to generate 

climate for the new conditions. 
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6 Conclusions/Recommendations

The models for the generation of annual, monthly 

and daily rainfall and climate data were reviewed in 

chapters 2 to 4. Since the rainfall and climate data are 

much less variable and less correlated than streamfl ow, 

the existing models can be used to generate these at 

annual and monthly level for single and multisites. 

As these models do not take into account of long 

term persistence, HSM and other models need to be 

investigated. Regarding daily rainfall, the transition 

probability matrix method performs well, but is not 

suitable for regionalisation and with limited length 

of data. Wang and Nathan (2000) approach appears 

to be promising. Based of this review, the following 

models are recommended for testing and adoption. The 

recommended models can be used to generate climate 

data under climate change conditions by adjusting the 

parameters appropriately.

6.1 Single site models

Annual rainfall model: A Markov model with Wilson-

Hilferty transformation. Investigate the possibility of 

incorporating both parameter uncertainty and year to 

year variation in parameters. Also, apply the HSM 

model to generated annual rainfall.

Monthly rainfall model: Modifi ed disaggregation 

scheme proposed by Mejia and Rousselle (1976) with 

appropriate transformation. The generation of the 

appropriate number months of  zero rainfall month is 

a challenge if we do not use the method of fragments. 

Investigate the possibility of varying the model 

parameters from year to year.

Daily rainfall model: Compare the approach of Wang 

and Nathan (2000) with transition probability matrix 

method. Investigate the year to year variation in model 

parameters.

Annual climate model: Multisite type model as 

described above.

Monthly climate model: Disaggregation scheme as 

described above.

Daily climate model: Multi-site model conditioned on 

the state of present and previous days. Investigate the 

means of incorporating correlations between rainfall 

depths and climate variables into the model.

6.2 Multisite models

Annual rainfall and climate model: Multisite model 

as discussed above.

Monthly rainfall and climate model: Disaggregation 

scheme of generated annual values as discussed 

above.
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