

URBAN STORMWATER TREATMENT BY STORAGE: A STATISTICAL OVERVIEW

H. P. Duncan

Report 97/1
January 1997

Duncan, Hugh, 1951 -

Urban stormwater treatment by storage: a statistical overview

Bibliography. ISBN 1 876006 17 X

1. Sewage - Purification - Statistics. 2. Urban runoff - Purification. 3. Storm sewers - Statistics. 4. Sewage tanks - Statistics. I. Cooperative Research Centre for Catchment Hydrology. II. Title (Series: Report (Cooperative Research Centre for Catchment Hydrology); 97/1).

628.3021

Keywords

Storm Sewage
Water Treatment
Storage
Detention Reservoirs
Water Quality Assessment
Statistical Analysis
Wetlands
Ponds
Physicochemical Properties

© Cooperative Research Centre for Catchment Hydrology, 1997 ISSN 1039-7361

PREFACE

The Cooperative Research Centre for Catchment Hydrology's Urban Hydrology research program comprises two main projects. Project C1 investigates methods for estimating runoff and pollution loads from urban catchments over a range of time and space scales. Project C2 brings together several studies aimed at improving design and management procedures for urban waterways.

This report was prepared for Project C1 by Hugh Duncan, seconded to the CRC for Catchment Hydrology from Melbourne Water, and follows on from a review recently completed by Hugh of urban stormwater quality literature. The main objectives of that review were to assess the current status of urban stormwater quality research, to facilitate access to existing information, and to establish priorities for future work.

Tom McMahon Program Leader, Urban Hydrology Cooperative Research Centre for Catchment Hydrology

ABSTRACT

This report presents a statistical overview of urban stormwater treatment by detention in onstream storage. The study was carried out by comparing and analysing the results of investigations at up to 51 separate locations in four countries reported in the literature.

All water quality concentration data analysed appears to be log-normally distributed. Area ratio is the best measure of basin size tested for predicting water quality change in storage. For some water quality parameters, input concentration is a highly significant explanatory variable, regardless of whether output concentration or percentage change is required. Area ratio and input concentration together can explain up to 89% of the between-study variation in output quality.

The 11 water quality parameters tested fall into three groups, based on their behaviour in storage - a settling group, a proportional group, and a rate-limited group. For the settling group, output concentration is roughly proportional to the square root of the input concentration, and inversely proportional to the square root of the area ratio. For the proportional group, output concentration is proportional to input concentration, and decreases very slowly as area ratio increases. For the rate-limited group, output concentration is proportional to input concentration to the power 1.6, and decreases slowly as the area ratio increases.

The derived relationships indicate that two smaller basins in series are more effective than one larger basin with the same total area ratio for all water quality parameters tested. Wetlands are either less effective than ponds of the same area ratio, or not significantly different from ponds, depending on the water quality parameter under consideration.

Average storage performance curves are presented for selected water quality parameters.

TABLE OF CONTENTS

1. INTRODUCTI	ON 1
2. DATA MANA	GEMENT 2
3. MAJOR EXPL	ANATORY VARIABLES 4
3.1 The Settling	Group 6
3.2 The Proport	tional Group7
3.3 The Rate-Li	mited Group7
3.4 Behaviour	8
4. DESCRIPTIVE	E FACTORS 8
5. PONDS VS. W	ETLANDS 9
6. PERFORMAN	CE CURVES10
7. FURTHER DE	VELOPMENT11
8. CONCLUSION	IS11
9. REFERENCES	12
APPENDICES	
Appendix A:	Water Quality Improvement in Storage
Appendix B:	Log-Normal Distributions of Output Concentration
Appendix C:	Multiple Regressions
Appendix D:	Descriptive Factors
Appendix E:	Ponds vs Wetlands
Appendix F:	Performance Curves

URBAN STORMWATER TREATMENT BY STORAGE:

A STATISTICAL OVERVIEW

1. INTRODUCTION

This report presents a statistical overview of urban stormwater treatment by detention in onstream storage. The study was carried out by comparing and analysing the results of investigations reported in the literature from 51 separate locations in four countries. The main emphasis is on lakes and ponds, but a comparison between pond and wetland performance is also included. The objective is to identify relationships embedded in the data, rather than to test a pre-existing hypothesis, so initial assumptions about likely processes and relationships have been kept to a minimum. Typically, between one half and three quarters of the between-study variation in output concentration can be accounted for using just two explanatory variables.

Detention has been a recognised component of urban stormwater treatment since at least the early 1970's. At first storage was described mainly in the context of flow control to other treatment facilities (Inaba 1970; Field 1973; Feuerstein & Friedland 1975), but the storage element was soon seen to provide useful water quality improvement in its own right (Guy 1978; Biggers et al. 1980). Detention storage has been classed as a Best Management Practice, which in this context means 'a nonstructural or elementary structural stormwater pollution control measure' (Finnemore 1982). Published studies have typically recorded removal efficiencies of 80%, 70%, 60%, and 50%, for suspended solids, heavy metals, phosphorus, and oxygen demand respectively, although the scatter of results is wide (Duncan 1995).

A substantial body of research on the effectiveness of detention has accumulated over the years, and has generated a range of descriptive and numerical design guidelines to improve output quality. Descriptive guidelines based on physical processes are provided by Randall (1982) and by the NURP project (Torno 1984). Cullen et al. (1988) emphasise the biological aspects of storage ponds, while Yousef et al. (1986a) concentrate on the nutrients nitrogen and phosphorus. Taken together, the guidelines from these studies recommend:

- long, narrow configurations, i.e. length to width ratios of 2:1 to 3:1,
- inlet and outlet structures at extreme ends of the basin,
- use of baffles or flow retarders,
- construction of ponds in series or in two stages, to reduce short-circuiting,
- development of grass cover on the floor of dry basins to reduce erosion,
- use of underground tile drains for outlet discharge, soil type permitting, to provide filtration,
- use of wet basins or dual-purpose basins (dry basins with extended detention time) in preference to conventional dry basins,
- open areas of water for sedimentation,
- 10 to 30% of surface area less than one metre depth, for emergent macrophytes,
- · control of normal top water level for management of macrophytes,
- fully drainable pond for ease of maintenance,
- trash and bedload traps upstream to reduce dredging of main pond, and
- depth not exceeding 2 metres for good nutrient removal.

More quantitative design guidelines have also been reported. Heaney (1986) tabulates pollutant removal for a range of pollutants and storage types, using data from the NURP study. Driscoll

(1986a) and Phillips & Goyen (1987) plot suspended solids removal against area ratio (basin surface area/catchment area), while Lawrence (1986) presents graphs of basin performance against hydraulic residence time.

A review of wetlands in the United States is provided by Strecker et al. (1992), who discuss the mechanisms and efficiency of water quality improvement. Wetland size, age, and flow conditions, seasonal changes, level of maintenance, and whether natural or constructed may all influence the contaminant removal efficiency.

This report concentrates mainly on the variation between studies reported in the published literature, a source of information which, apart from the NURP program (Athayde et al. 1983), has rarely been exploited. Thus a significant result here does constitute largely new information, and it is encouraging to see how closely it agrees with the more conventional within study results. On the other hand, a negative or non-significant result here does not in any way detract from the conclusions of studies set up to examine a particular aspect of treatment by storage in more detail.

2. DATA MANAGEMENT

The data as initially collated for this study is listed in Appendix A. It has been retabulated into a spreadsheet format more suitable for analysis, based on an initial review of the amount and type of data available. One record in the analysis format is the average behaviour of one experimental condition at one site in the source document. Thus, for example, the four nested sites of Wu et al. (1988) at Charlotte in North Carolina form four records, and the separately tabulated results for summer and autumn storms at Viborg in Denmark (Hvitved-Jacobsen et al. 1987) form two records. This means that separate records are not always fully independent.

Data has been prepared for a multiple regression approach, using output concentration in milligrams per litre as the dependent variable. Percent removal (or removal efficiency) has frequently been used in published studies as the measure of basin performance, but it is not a suitable measure for statistical analysis. It is clearly not normally distributed as it is bounded at +100%, which denotes complete removal. Percent remaining in the outflow is a better measure statistically, but is less than ideal for another reason. The use of percent remaining suppresses the importance of the input concentration - it is too easy to assume that dividing by input concentration has standardised the data against this parameter and so 'removed' its effect. The analysis which follows shows that this is not at all the case for some water quality parameters.

Output concentrations in this data set can be described by the log-normal distribution. The observed data points and fitted probability distributions are plotted for each contaminant in Appendix B, together with results of the Shapiro-Wilk test for normality (applied in the log domain). The hypothesis of log-normality can not be rejected at the 99% confidence level for any of the eleven contaminants tested, and ten of the eleven fall within the 95% band. Furthermore, the residuals remaining after the regression analysis described in the following section are all log-normally distributed at the 95% level. This fully supports the almost universal observation of log-normality in urban water quality concentration data (Mance & Harman 1978; Torno 1984; Driscoll 1986b; Marsalek 1991). Accordingly, log-transformed concentration data has been used throughout the analysis.

The explanatory variables used are input concentration, area ratio, basin storage, and average depth. Input concentration is measured in milligrams per litre. Area ratio is the surface area of the storage divided by the total catchment area, and is dimensionless. Basin storage is the storage volume divided by the total catchment area, and has units of millimetres. It represents the depth of rainfall which could be held in the storage given 100% runoff from the catchment.

Average depth is calculated as the storage volume divided by the surface area, and is measured in metres.

Mean annual rainfall in millimetres was also tested as an explanatory variable. Although occasionally significant, it was found to be less valuable than input concentration or basin size. Due to limitations imposed by sample size, it was not used in detailed analysis.

These explanatory variables were chosen for their simplicity, their relevance to existing descriptive and quantitative design guidelines and, for the size measures at least, their general availability. A consequence of using these measures is that only on-stream storages can be included - the concepts of area ratio and storage cannot be directly applied to off-stream storages. Descriptors which incorporate runoff information (such as mean overflow rate or mean residence time) are intuitively appealing, but are less readily available for many sites.

The use of input concentration as an explanatory variable for output concentration tends to produce high correlation coefficients, particularly when the basin has little effect on concentration. In one sense this is correct - if the input concentration is known and the basin has no effect, the output concentration is indeed known accurately - but it seems to overstate the practical utility of the relationship. The standard error about the regression line is not influenced by such effects, and is therefore a better measure of practical value. It is reported here, along with the correlation coefficient, for every relationship calculated.

Input concentration is frequently not quoted in published reports, particularly when performance is expressed as a percentage change in concentration. But prior studies (Ferrara & Witkowski 1983; Grizzard et al. 1986) and initial review of this data show that it cannot be ignored, even when output is expressed as a percentage of input. As a result, a considerable amount of otherwise valuable data has necessarily been excluded from the analysis.

To obtain sufficient data for analysis, it has been necessary to combine different conditions which would ideally be treated separately. Firstly, all types of on-stream storage have been considered together. Most records are for wet ponds or lakes, but dry ponds, oversized pipes, and wetlands are also included. Oversized pipes are small underground storages formed by the use of a much enlarged pipe diameter for a short length of drain. Secondly, the time over which results are averaged covers a wide range, from isolated storm events to total flow over a study year. Most records are the average of several storm events at a site, and at most of these sites the flow is negligible except during storms. Thirdly, the quality data quoted may be based on arithmetic means, geometric means, or medians of individual readings or events. The validity of grouping these diverse conditions together is checked in a later section.

In most cases the three basin size measures can be taken directly from the published sources, but occasionally one or more of the measures cannot be obtained from information supplied. To make at least partial use of this data, the missing size measures have been estimated by correlation with the available measures. In five cases, all part of the NURP study, area ratio and storage have been estimated from the overflow rate (mean runoff rate/basin surface area), and in seven cases storage has been estimated from area ratio or vice versa. Altogether, 38 data records have been obtained from 27 different locations.

It can be seen that a statistically rigorous treatment of data has not been achieved - there are just too many possible conditions, and not enough data to distinguish between them. Even so, the similarities and differences which emerge from the analysis which follows seem to be both useful and informative.

3. MAJOR EXPLANATORY VARIABLES

Assessment of the major explanatory variables has been carried out using multiple regression on log-transformed data. Eleven water quality parameters had sufficient data to permit analysis. They are suspended solids, total lead, total zinc, dissolved phosphorus, total phosphorus, organic nitrogen, ammonia nitrogen, total Kjeldahl nitrogen, oxidised nitrogen, total nitrogen, and chemical oxygen demand.

Data from the pond at Maitland Interchange, Florida, reported by Hvitved-Jacobsen et al. (1984) and Yousef et al. (1986a), shows such high contaminant removal that the record appears to be a statistical outlier for several quality parameters. The Maitland pond is unusual in that surface outflow rarely occurs, and pond water quality has been taken as an estimate of output quality. The authors note the unusually high contaminant removal, and discuss the likely causes. Such high removal appears to be unlikely elsewhere unless a number of conditions are met. The record has therefore been deleted from the current analysis whenever it is a probable outlier, which is the conservative approach from a treatment efficiency point of view. Results from other studies at the same site (Yousef et al. 1984; Yousef et al. 1985; Yousef et al. 1986b) have not been deleted.

It should be noted in this context that the data used here represents actual practice, not necessarily best management practice. This is particularly true of the older basins, some of which were not designed with water quality improvement in mind at all. Hopefully, new basins specifically designed for quality management would perform more like the best of those described here.

For each water quality parameter, the output concentration has been regressed against the input concentration and each measure of basin size in turn. The size measures are all strongly correlated with each other, so they have not been used together. Besides, sample sizes are not large enough to permit reliable analysis using more than two explanatory variables. The best regression using two explanatory variables is tabulated below for each water quality parameter. In almost all cases area ratio is the best size measure, but where it is not, the relationship using area ratio is also included, to allow direct comparison between quality parameters. Units are milligrams per litre for input and output concentration and millimetres for storage, while area ratio is dimensionless. The numbers in brackets are the 95% confidence limits on the coefficients and intercepts.

Suspended Solids:

$$\label{eq:log(SS_out)} \begin{split} Log(SS_{out}) &= log(SS_{in}) \times 0.60(\pm 0.23) - log(Area \ Ratio) \times 0.31(\pm 0.16) - 0.34(\pm 0.48) \\ r^2 &= 0.65, \ Standard \ Error = 0.28, \ Observations = 31 \end{split}$$

Total Lead:

$$Log(Lead_{out}) = log(Lead_{in}) \times 0.45(\pm 0.44) - log(Area Ratio) \times 0.38(\pm 0.36) - 1.91(\pm 0.67)$$

$$r^2 = 0.35, Standard Error = 0.30, Observations = 16$$

Total Zinc:

$$Log(Zinc_{out}) = log(Zinc_{in}) \times 0.30(\pm 0.62) - log(Area Ratio) \times 0.73(\pm 0.41) - 2.38(\pm 1.10)$$

$$r^2 = 0.57, Standard Error = 0.38, Observations = 20$$

Dissolved Phosphorus:

$$Log(DisP_{out}) = log(DisP_{in}) \times 1.00(\pm 0.43) - log(Storage) \times 0.11(\pm 0.15) - 0.09(\pm 0.61)$$

 $r^2 = 0.73$, Standard Error = 0.22, Observations = 13

or using area ratio:

$$Log(DisP_{out}) = log(DisP_{in}) \times 0.96(\pm 0.42) - log(Area Ratio) \times 0.13(\pm 0.18) - 0.50(\pm 0.60)$$

$$r^2 = 0.72, Standard Error = 0.23, Observations = 13$$

Total Phosphorus:

$$Log(TotP_{out}) = log(TotP_{in}) \times 0.91(\pm 0.23) - log(Area Ratio) \times 0.13(\pm 0.10) - 0.54(\pm 0.27)$$

$$r^2 = 0.71, Standard Error = 0.19, Observations = 33$$

Organic Nitrogen:

$$Log(OrgN_{out}) = log(OrgN_{in}) \times 0.72(\pm 0.44) - log(Area Ratio) \times 0.03(\pm 0.08) - 0.15(\pm 0.18)$$

$$r^2 = 0.74, Standard Error = 0.11, Observations = 10$$

Ammonia Nitrogen:

$$Log(AmmN_{out}) = log(AmmN_{in}) \times 0.86(\pm 0.54) - log(Area Ratio) \times 0.05(\pm 0.24) - 0.31(\pm 0.60)$$

$$r^2 = 0.59, Standard Error = 0.34, Observations = 12$$

Total Kjeldahl Nitrogen:

$$Log(TKN_{out}) = log(TKN_{in}) \times 1.00(\pm 0.32) - log(Area Ratio) \times 0.02(\pm 0.06) - 0.12(\pm 0.13)$$

 $r^2 = 0.68$, Standard Error = 0.12, Observations = 25

Oxidised Nitrogen:

$$Log(OxidN_{out}) = log(OxidN_{in}) \times 1.63(\pm 0.34) - log(Area Ratio) \times 0.21(\pm 0.14) - 0.53(\pm 0.31)$$

$$r^2 = 0.89$$
, Standard Error = 0.23, Observations = 20

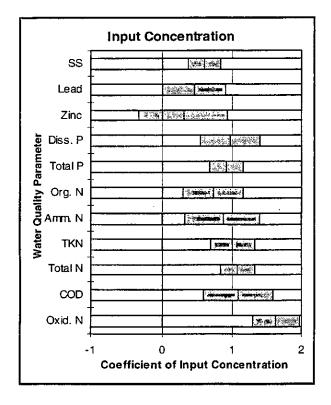
Total Nitrogen:

$$\label{eq:log(TotNout)} \begin{split} Log(TotN_{out}) = log(TotN_{in}) \times 1.08(\pm0.25) - log(Area~Ratio) \times 0.06(\pm0.06) - 0.23(\pm0.13) \\ r^2 = 0.82, ~Standard~Error = 0.10, ~Observations = 22 \end{split}$$

Chemical Oxygen Demand:

$$Log(COD_{out}) = log(COD_{in}) \times 1.08(\pm 0.46) - log(Storage) \times 0.18(\pm 0.13) - 0.04(\pm 0.78)$$

$$r^2 = 0.76, Standard Error = 0.13, Observations = 14$$
or using area ratio:


$$\label{eq:code} \begin{split} Log(COD_{out}) = log(COD_{in}) \times 1.08(\pm 0.50) - log(Area~Ratio) \times 0.20(\pm 0.18) - 0.63(\pm 0.91) \\ r^2 = 0.72,~Standard~Error = 0.15,~Observations = 14 \end{split}$$

Some of the coefficients in the above list are not statistically significant, according to conventional interpretation. But the objective here is to screen the data and reveal relationships, rather than to test a predefined hypothesis, so all coefficients (and their associated confidence bands) are retained for the time being.

Appendix C tabulates information on the three multiple regressions for output concentration (one for each size measure), a sample regression for output percent, and the mean and standard deviation of input and output data. A graph of observed and predicted output concentration is also shown. Input concentration is plotted on the horizontal axis of the graph. The vertical scatter of the predicted points about the line of best fit is caused by the basin size measure

used. The vertical scatter of the observed points includes in addition any remaining variation not explained by the regression.

The best estimates of input concentration and area ratio coefficients, together with their 95% confidence bands, are shown in Figures 1 and 2. It can be seen that the eleven water quality parameters fall into three distinct groups.

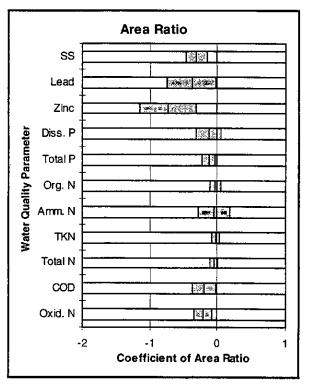


Figure 1: Coefficients of Input Concentration

Figure 2: Coefficients of Area Ratio

3.1 The Settling Group

Suspended solids, total lead, and total zinc form one group. Their coefficients of input concentration are significantly (at the 95% confidence level) less than one, and are typically about 0.5, working with log transformed data. In untransformed coordinates, this means that output concentration is roughly proportional to the square root of the input concentration. Increasing the input concentration increases the output concentration, but decreases the percentage of contaminant remaining in the outflow. Behaviour of this form is characteristic of contaminants subject to sedimentation (Ferrara & Witkowski 1983; Grizzard et al. 1986), presumably because higher concentrations tend to include larger particles, leading to faster settling of a portion of the contaminant (Ferrara & Witkowski 1983). Hence this group can be described as the 'settling' group. Under favourable conditions - large area ratio and high input concentration - removal efficiencies of 80% or more can be achieved.

The area ratio coefficients of the settling group are significantly (at 95%) less than zero, and are typically about -0.5. Thus doubling the area ratio would reduce the output concentration by about one third. In each case area ratio is the best measure of basin size, followed by storage volume. Average depth is a very poor measure, which is to be expected. Increasing the pond depth increases the retention time, but also increases the settling time required to remove a given particle from the flow.

3.2 The Proportional Group

Chemical oxygen demand, dissolved and total phosphorus, and all forms of nitrogen except oxidised nitrogen form a second group. Their coefficients of input concentration are never significantly different from one, and the group mean is indeed very close to 1.0. This means that output concentration is proportional to input concentration for these quality parameters or, equivalently, that the percentage of contaminant remaining in the outflow is not affected by the inflow concentration. The overall removal efficiency is typically about 20 to 40%.

For this group of quality parameters, the common assumption of proportional behaviour in storage appears to be justified. An implication of this behaviour is that settling is not a dominant removal process. This is not surprising for the parameters with a large dissolved component, but the presence of total phosphorus in the group is interesting. Perhaps we should say that even if settling does occur, the contaminant apparently is not chemically immobilised by the physical settling.

The area ratio coefficients for the proportional group are typically about -0.1, which is very close to zero. But due to quite narrow error bands, the difference from zero is significant (at 95%) for two of the quality parameters (COD, Total P) and marginal for a third (Total N). Since these are the most global or inclusive parameters in the group (of which the others are subsets), it is probably fair to say that the effect of area ratio on the group as a whole is significant. So increasing the basin size does decrease the output concentration of this group of parameters, but the effect is very small. Doubling the area ratio would decrease the output concentration by less than one tenth.

Area ratio is the best measure of basin size for total phosphorus and total nitrogen, but storage is a little better for chemical oxygen demand. No measure of basin size is significant for the remaining parameters in this group. Either basin size really is not important for these parameters, or the measures used here fail to capture the essential features. Or perhaps the chemical and biological interactions between the various dissolved nutrients are just too complex to resolve using this type of approach on the amount of data available.

Literature review has shown that most nitrogen in urban runoff comes from rainfall and dustfall, rather than from the urban environment (Duncan 1995). This may help to explain the narrower observed range of inflow concentrations for the forms of nitrogen (since they are less affected by local variation), the generally poor removal by storage, and the very small effect of basin size (since the runoff water may already be approaching equilibrium with the atmosphere with respect to the various forms of nitrogen).

3.3 The Rate-Limited Group

Oxidised nitrogen (nitrite plus nitrate) stands in a group of its own, as its coefficient of input concentration (about 1.6) is significantly (at 95%) greater than one. In other words, the lower the inflow concentration, the more completely it is removed. This implies a removal process that can handle a given rate of contaminant removal, but is relatively insensitive to the concentration present. At higher input concentrations, where quality improvement is most needed, the removal efficiency is poor.

Area ratio is the best measure of basin size, while depth is not significant. The area ratio coefficient is about -0.2, and is significantly (at 95%) different from zero. Thus doubling the area ratio would reduce the outflow concentration by about one eighth.

Oxidised nitrogen can be produced in urban stormwater by nitrification of ammonia in aerobic sediments, and can be removed by denitrification in anaerobic sediments (Hvitved-Jacobsen et al. 1984). The role of bottom sediments in this process helps to explain why area ratio is the

preferred size measure, and the role of bacteria and diffusion processes make a rate-limited removal process at least plausible.

3.4 Behaviour

In every case where basin size is found to be significant, area ratio is a good measure of basin size, and with only one exception (COD) it is the best measure. This is a useful result, since the area ratio is perhaps the most commonly available size measure in published literature, and it can be readily obtained from topographic maps for both existing and planned developments. The effect of area ratio is greatest for the settling group of parameters, and least for the proportional group.

The dominance of area ratio as the best measure of basin size was revealed by the statistical analysis. But in hindsight, the result should not be surprising. Of the various processes which may contribute to contaminant removal, settling (see Section 3.1), biological action in bottom sediments, solar radiation input to plants, and movement of atmospheric oxygen into the water all depend on surface area more strongly than on depth. Only in the case of slow chemical reactions in solution is volume (and hence residence time) likely to be more important. The better correlation of COD with volume is consistent with this view.

The common practice of expressing treatment efficiency in terms of percentage change, regardless of input concentration, is valid only for the proportional group of water quality parameters. For the settling group and the rate-limited group, input concentration is a highly significant explanatory variable, even when percentage change is the quantity required. Allocation into groups is based on fairly limited data for the eleven parameters considered here, and has not been done at all for other parameters. It is therefore most important that input concentration is included in all reports which present storage effectiveness data. Tabulation of percentage change alone is not sufficient.

Storage shape and layout have not been directly input in any way, so it is interesting to find a shape effect in the output. For every quality parameter tested, the predicted removal of two smaller storages in series is better than that of a single larger storage of the same total area ratio. The two smaller storages can be thought of as a single basin in which short circuiting has been eliminated. While detailed output should not be taken too literally outside the range of conditions analysed (e.g. for a cascade of very small storages), it appears that a measure of physical reality has been achieved.

Input concentration and area ratio in most cases explain a substantial proportion of the variation in treatment efficiency in storage. The variation explained ranges from 35% for lead to 89% for oxidised nitrogen when expressed as an output concentration directly, and from negligible for total Kjeldahl nitrogen to 65% for oxidised nitrogen when expressed as a percentage of input concentration. The standard error about the regression line ranges from ± 0.10 (× or \div a factor of 1.3 in untransformed coordinates) for total nitrogen to ± 0.37 (× or \div a factor of 2.3 in untransformed coordinates) for total zinc.

4. DESCRIPTIVE FACTORS

In addition to the major explanatory variables discussed above, a number of more descriptive factors can also be assessed. These include the storage type (wetland, dry basin, or pond), the location, the types of events measured, and the measure of central tendency used in the source documents. The various factors were lumped together for the analysis of major explanatory variables, and the objective here is to check whether it was statistically valid to do so. Since small sample sizes make formal statistical tests impractical, the effects are assessed visually (for

the quality parameters with sufficient data) on the residual graphs in Appendix D. The residuals are the differences between observed values of output concentration and values estimated using the equations derived above. A positive residual indicates a higher output concentration (i.e. lower contaminant removal) than could be explained by the input concentration and area ratio.

Although some minor effects can be noted, none of the subsets identified in Appendix D appear to differ markedly from the bulk of the data. Hence there seems to be no reason to reject any subset from the combined analysis above. It appears that combining the data from the various locations and conditions was an acceptable simplification.

There is perhaps a tendency for the Australian sites to show above average suspended solids input concentrations and below average total nitrogen, which is reasonable in a dry climate far from the largest northern hemisphere industrial areas. Removal of suspended solids, total phosphorus, and total nitrogen at the Australian sites tends to be better than predicted.

The measure of central tendency used to report concentrations seems to have little effect. We would not expect it to for the proportional group, since the input concentration does not matter anyway, but even for suspended solids and oxidised nitrogen any effect appears to be relatively small.

Sites for which low flows or long term mass balances have been measured perform at least as well as those which measured storm events only. So the measured improvement in quality cannot be attributed just to averaging out of peak concentrations in storage.

Finally, the two wetland sites both show poor removal of total phosphorus, compared with ponds having comparable areas and input concentrations. But sample sizes in all cases are so small that any apparent effects can only be suggestive, not statistically significant.

5. PONDS VS. WETLANDS

The distinction between pond and wetland performance can be analysed further for the proportional group of water quality parameters (for which change in water quality in storage does not depend on input concentration), since additional data is available if input concentration is not required. The extra data also permits the inclusion of four new water quality parameters - total copper, orthophosphate, nitrate, and biological oxygen demand - in addition to the 11 previously analysed. Each storage record has been allocated to one of three groups - pond only, wetland only, and pond & wetland in series at the one site - and the performance of the three groups has been compared.

The expanded data set comprises 65 data records from 51 different locations. Of the 65 records, 39 are from ponds, lakes, or dry basins, 19 are from wetlands, and 7 are from combined ponds and wetlands.

A summary of the analysis is shown in Appendix E. The dependent variable now is output concentration as a percentage of input concentration (i.e. output percent), and area ratio is the only explanatory variable used. For each water quality parameter, percentage output is plotted against area ratio (still in log-transformed coordinates), and a combined regression line is fitted to the data from all three groups. The hypothesis that wetland percentage output is higher than pond percentage output is tested by comparing the residuals about the combined regression line, using one tailed t-tests.

For consistency and completeness, all 15 water quality parameters were analysed, but no significant differences were observed for those parameters known to be in the settling group or the rate-limited group. This is hardly surprising - ignoring a variable with the explanatory

power that input concentration has for these groups can only serve to mask any remaining association.

Among the proportional group and the four new quality parameters there are a number of significant differences. Wetland percentage output is higher than pond percentage output (i.e. the wetland percentage removal is lower) for total copper, orthophosphate, dissolved phosphorus, total phosphorus, organic nitrogen, and nitrate, but not significantly different for the other quality parameters. The small pond & wetland group tends to produce low percentage output (i.e. high percentage removal), although the significance of this result was not formally tested, due to inadequate sample size.

These are surprising results at first sight. Wetlands are generally felt to be more effective than ponds of the same size, but here they are shown to be either less effective or not significantly different. The main reason for this apparent anomaly is the use of area ratio rather than volume to measure basin size. Wetlands on average are shallower than ponds, and so have a smaller volume for a given surface area. A wetland performing somewhat better than a pond per unit volume may perform much the same or somewhat worse than the same pond per unit area. It is also possible that flow into and through the vegetated areas during a runoff event is restricted by the vegetation, so that these areas are to some extent bypassed by high flows and do not fully participate in the removal processes. Even so, area ratio has been shown to be the preferred measure of basin size.

Why should ponds and wetlands together tend to be more effective than either alone, for the same area ratio? Perhaps it is just chance - after all, sample size of the combined group is very small - or perhaps ponds and wetlands together do indeed have a complementary effect. But more likely it is just another manifestation of the shape effect noted above, in which the transition from pond to wetland forms a constriction which prevents short circuiting. There is an obvious analogy here with the basins in series recommended by Randall (1982), and the upstream bedload traps of Cullen et al. (1988).

6. PERFORMANCE CURVES

The principal objective of the analysis so far has been to identify relationships embedded in the data, and to establish the similarities and differences in behaviour under a range of conditions. Because both the raw data and its residuals after regression analysis approximate the normal distribution in the log domain, all analysis has been carried out using log transformed data. In this way, the assumptions underlying the analysis procedures and tests are most nearly met.

However, the log domain is not suitable for practical applications such as performance curves. In particular, an arithmetic mean in the log domain becomes a geometric mean when transformed back to the linear domain, and will always underestimate the linear arithmetic mean. But for any calculation of total load, or any average over multiple sites, or over time at one site, it is the linear arithmetic mean that is needed.

When the output is a single parameter, the simplest solution is to quote both the arithmetic and geometric means. When the output is a regression line, as in this case, the analogous procedure is to calculate both the arithmetic and geometric means of the residuals about the regression line, and apply the difference between them to the regression line itself. The difference is an additive constant in the log domain, and a multiplying factor in the untransformed domain, and measures the amount by which the arithmetic mean exceeds the geometric mean. It is referred to here as the 'mean bias factor'. It depends upon the scatter of the residuals, and in this study ranges from 1.02 for total nitrogen (where the scatter of residuals is small) to 1.39 for zinc.

Appendix F presents average performance curves for the six main water quality parameters, excluding the individual components of total phosphorus and total nitrogen. The information box on each graph lists the equation of the curves as fitted, the standard error of the residuals, and the mean bias factor used to create the adjusted curves shown.

If the performance curves in Appendix F are to be used in practice, several qualifications and caveats need to be kept in mind. Firstly, although the relationships are statistically significant at the 95% level, the error bands associated with the curves remain wide. For suspended solids, for example, the standard error is +92% and -48% of the fitted value. In other words, about one third of the basins analysed produced an output concentration outside this very substantial error band. Secondly, the data analysed represents actual practice, not necessarily best management practice. Finally, results from a range of storage configurations, measurement techniques, and catchment types have been analysed together. Most measurements are event mean concentrations of several storm events, from permanent wet ponds or lakes, on catchments where flow is very small except during storms.

7. FURTHER DEVELOPMENT

Initial review showed that annual rainfall at a site could be a significant explanatory variable for the quality parameters with the largest sample sizes. Coefficients of annual rainfall are always positive, which means that higher rainfall, for a given input concentration and area ratio, gives a higher output concentration (i.e. lower removal efficiency). This suggests that annual rainfall could be used to capture some of the runoff information contained in parameters such as mean overflow rate or mean residence time, using a readily available measure.

The problem, however, is sample size. Even the largest samples contain just over 30 points, so the use of more than two explanatory variables must be treated with extreme caution. But as more data becomes available, this is a direction which should certainly be followed.

8. CONCLUSIONS

This report has presented a statistical overview of urban stormwater treatment by detention in on-stream storage, concentrating mainly on lakes and ponds. The objective has been to identify relationships embedded in the data rather than to test a pre-existing hypothesis. From the analysis and discussion above, the following conclusions can be drawn.

- All water quality concentration data analysed appears to be log-normally distributed.
- Of the three measures of basin size tested, area ratio (storage surface area/total catchment area) is the preferred measure. In every case where basin size is found to be significant, it is a good measure of basin size, and with only one exception it is the best measure.
- For some water quality parameters, input concentration is a highly significant explanatory variable, regardless of whether output concentration or percentage change is required. Hence input concentration should always be reported in studies of treatment efficiency in storage.
- Area ratio and input concentration together can explain up to 89% of the between study variation in output quality expressed as a concentration, and up to 65% of the variation in output quality expressed as a percentage of input concentration.

- The 11 water quality parameters tested fall into three groups, based on their behaviour in storage:
 - The settling group (suspended solids, total lead, total zinc). Output concentration is
 roughly proportional to the square root of the input concentration, and inversely
 proportional to the square root of the area ratio. Under favourable circumstances the
 removal efficiency can be high.
 - The proportional group (dissolved phosphorus, total phosphorus, organic nitrogen, ammonia nitrogen, total Kjeldahl nitrogen, total nitrogen, chemical oxygen demand).
 Output concentration is proportional to input concentration (i.e. percentage change is independent of input concentration), and proportional to area ratio to the power minus 0.1. The overall removal efficiency tends to be poor.
 - The rate-limited group (oxidised nitrogen). Output concentration is proportional to input concentration to the power 1.6, and proportional to area ratio to the power minus 0.2. At higher input concentrations, where quality improvement is most needed, the removal efficiency is poor.
- The derived relationships indicate that two smaller basins in series are more effective than one larger basin with the same total area ratio, for all water quality parameters tested.
- There is a suggestion (based on a small sample) that combined ponds and wetlands are more effective than either alone, for the same area ratio. This is probably related to the shape effect described in the previous point.
- Wetlands are significantly (at 95%) less effective than ponds of the same area ratio for removing total copper, all forms of phosphorus, organic nitrogen, and nitrate nitrogen. This may be a result of reduced flow through the vegetated areas. No significant difference was found for the remaining quality parameters.

9. REFERENCES

- Athayde, D.N., Shelley, P.E., Driscoll, E.D., Gaboury, D. & Boyd, G. 1983, Results of the Nationwide Urban Runoff Program, Environmental Protection Agency, Washington, DC., PB84-185537.
- Baca, E., Bedient, P.B. & Olsen, R. 1982, 'Urban Impacts of Water Supply Reservoir', J Environ Eng Div, Proc Am Soc Civ Eng, vol. 108, no. EE1, pp. 73-87.
- Biggers, D.J., Hartigan, J.P. & Bonuccelli, H.A. 1980, 'Urban Best Management Practices (BMP's): Transition from Single-Purpose to Multipurpose Stormwater Management', *Proceedings of the International Symposium on Urban Storm Runoff*, Lexington, Kentucky, ed. M.E. Meadows & R.W. De Vore, pp. 249-274.
- Castaldi, F.J. 1983, Final Report of the Nationwide Urban Runoff Program in Austin, Texas, USEPA, Austin.
- Characklis, W.G., Bedient, P.B., Gaudet, F.G. & Roe, F.L. 1978, 'A Study of Stormwater Runoff Quality', *Prog Water Technol*, vol. 10, no. 5/6, pp. 673-699.
- Characklis, W.G., Gaudet, F.J., Roe, F.L. & Bedient, P.B. 1979, Maximum Utilization of Water Resources in a Planned Community Stormwater Runoff Quality: Data Collection, Reduction and Analysis, United States Environmental Protection Agency, Cincinnati, EPA-600/2-79-050b.

- Cullen, P., Lambert, D. & Sanders, N. 1988, 'Design and Management Considerations for Water Pollution Control Ponds', *Hydrology and Water Resources Symposium*, Canberra, IEAust, pp. 37-42.
- Dally, L.K. 1984, 'Urban Storm Drainage Detention Facilities for Runoff and Water Quality Control', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 1, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 47-56.
- Department of Territories 1986, *Pollutant Removal in an Urban Wetland*, National Capital Development Commission, Canberra.
- Driscoll, E.D. 1986a, 'Detention and Retention Controls for Urban Runoff', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, New York, pp. 381-393.
- Driscoll, E.D. 1986b, 'Lognormality of Point and Non-Point Source Pollutant Concentrations', Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 438-458.
- Duncan, H.P. 1995, A Review of Urban Storm Water Quality Processes, Cooperative Research Centre for Catchment Hydrology, Melbourne.
- Ferrara, R.A. & Witkowski, P. 1983, 'Stormwater Quality Characteristics in Detention Basins', *J Environ Eng*, vol. 109, no. 2, pp. 428-447.
- Feuerstein, D.L. & Friedland, A.O. 1975, 'Pollution in San Francisco's Urban Runoff', *Urbanization and Water Quality Control*, Rutgers University, New Jersey, ed. W. Whipple, American Water Resources Association, pp. 85-94.
- Field, R. 1973, 'Combined Sewer Overflows', Civ Eng (ASCE), vol. 43, no. 2, pp. 57-60.
- Finnemore, E.J. 1982, 'Stormwater Pollution Control: Best Management Practices', *J Environ Eng Div, Proc Am Soc Civ Eng*, vol. 108, no. EE5, pp. 835-851.
- Grizzard, T.J., Randall, C.W., Weand, B.L. & Ellis, K.L. 1986, 'Effectiveness of Extended Detention Ponds', *Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference*, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 323-337.
- Guy, H.P. 1978, 'Sediment Management Concepts in Urban Storm Water System Design', Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton, ed. P.R. Helliwell, Pentech Press, pp. 523-534.
- Heaney, J.P. 1986, 'Research Needs in Urban Storm-Water Pollution', *J Water Resour Plann Manage*, vol. 112, no. 1, pp. 36-47.
- Hey, D.L. 1982, 'Lake Ellyn and Urban Stormwater Treatment', Stormwater Detention Facilities Planning, Design, Operation, and Maintenance, Henniker, New Hampshire, ed. W. DeGroot, ASCE, pp. 220-235.
- Holler, J.D. 1989, 'Storm Water Detention Basin Nutrient Removal Efficiency', J Water Resour Plann Manage, vol. 115, no. 1, pp. 52-63.
- Hvitved-Jacobsen, T., Keiding, K. & Yousef, Y.A. 1987, 'Urban Runoff Pollutant Removal in Wet Detention Ponds', *Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage*, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 137-142.

- Hvitved-Jacobsen, T., Yousef, Y.A., Wanielista, M.P. & Pearce, D.B. 1984, 'Fate of Phosphorus and Nitrogen in Ponds Receiving Highway Runoff', *Sci Total Environ*, vol. 33, pp. 259-270.
- Inaba, K. 1970, 'Extent of Pollution by Stormwater Overflows and Measures for its Control', Advances in Water Pollution Research, Proceedings of the Fifth International Conference, San Francisco and Hawaii, vol. 2, ed. S.H.Jenkins, Pergamon Press, pp. HA-8/1 HA-8/7.
- Jones, R.H., Revitt, D.M., Shutes, R.B.E. & Ellis, J.B. 1993, 'Ecotoxicological Impacts of Hydrocarbons in an Urban Aquatic Environment', Proceedings of the Sixth International Conference on Urban Storm Drainage, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 488-493.
- Lawrence, I. 1986, 'Source and Fate of Urban Runoff Constituents and their Management', Stormwater Quality in Urban Areas, Wollongong, Water Research Foundation of Australia, pp. 2-1 2-11.
- Maldonato, T.J. & Uchrin, C.G. 1994, 'Petroleum Hydrocarbons in Detention-Basin Sediments', *J Environ Eng*, vol. 120, no. 3, pp. 683-690.
- Mance, G. & Harman, M.M.I. 1978, 'The Quality of Urban Storm-Water Runoff', Urban Storm Drainage, Proceedings of the International Conference held at the University of Southampton, Southamption, ed. P.R. Helliwell, Pentech Press, London, pp. 603-617.
- Marsalek, J. 1991, 'Pollutant Loads in Urban Stormwater: Review of Methods for Planning-Level Estimates', *Water Resour Bull*, vol. 27, no. 2, pp. 283-291.
- Martin, E.H. 1988, 'Effectiveness of an Urban Runoff Detention Pond-Wetlands System', *J Environ Eng*, vol. 114, no. 4, pp. 810-827.
- Martin, E.H. & Miller, R.A. 1987, 'Efficiency of an Urban Stormwater Detention System', Urban Storm Water Quality, Planning and Management, Proceedings of the Fourth International Conference on Urban Storm Drainage, Lausanne, Switzerland, ed. W. Gujer & V. Krejci, pp. 143-148.
- Oliver, L.J. & Grigoropoulos, S.G. 1981, 'Control of Storm-Generated Pollution Using a Small Urban Lake', *J Water Pollut Control Fed*, vol. 53, no. 5, pp. 594-603.
- Phillips, B.C. & Goyen, A.G. 1987, 'Guidelines for Improving Urban Stormwater Quality Using Water Quality Control Structures', *Urban Runoff Water Quality*, Sydney, IEAust & AWWA.
- Randall, C.W. 1982, 'Stormwater Detention Ponds for Water Quality Control', Stormwater Detention Facilities Planning, Design, Operation, and Maintenance, Henniker, New Hampshire, ed. W. DeGroot, ASCE, pp. 200-204.
- Reddy, K.R., Sacco, P.D., Graetz, D.A., Campbell, K.L. & Sinclair, L.R. 1982, 'Water Treatment by Aquatic Ecosystem: Nutrient Removal by Reservoirs and Flooded Fields', *Environ Manage*, vol. 6, no. 3, pp. 261-271.
- Strecker, E.W., Kersnar, J.M., Driscoll, E.D. & Horner, R.R. 1992, *The Use of Wetlands for Controlling Stormwater Pollution*, Terrene Institute, Washington, DC.
- Striegl, R.G. 1987, 'Suspended Sediment and Metals Removal from Urban Runoff by a Small Lake', *Water Resour Bull*, vol. 23, no. 6, pp. 985-996.
- Swanson, P. 1992, 'A Trial Wetland System for Urban Runoff Treatment in the Blue Mountains of New South Wales', Wetlands Downunder, Wetland Systems in Water Pollution Control, Sydney, Australia.

- Swanson, P. 1994, Performance Evaluation of a Constructed Wetland for Urban Runoff Treatment, Australian Water Technologies, for the (Sydney) Water Board, Sydney, 92/70.
- Tomlinson, G.W., Fisher, A.G. & Clark, R.D.S. 1993, Stormwater A Community Resource: The Paddocks, Engineering and Water Supply Department, Adelaide, EWS Report No. 93/11.
- Torno, H.C. 1984, 'The Nationwide Urban Runoff Program', *Proceedings of the Third International Conference on Urban Storm Drainage*, Goteborg, Sweden, vol. 4, ed. P. Balmer, P. Malmquist & A. Sjoberg, pp. 1465-1474.
- Whiteley, H.R., Licsko, Z.J. & Corsi, R.L. 1993, 'Quality of Stormwater from Residential Areas in Guelph, Ontario, Canada', *Proceedings of the Sixth International Conference on Urban Storm Drainage*, Niagara Falls, Ontario, Canada, vol. 1, ed. J. Marsalek & H.C. Torno, pp. 531-536.
- Wu, J.S., Holman, R. & Dorney, J. 1988, 'Water Quality Study on Urban Wet Detention Ponds', Design of Urban Runoff Quality Controls, Proceedings of an Engineering Foundation Conference on Current Practice and Design Criteria for Urban Quality Control, Missouri, ed. L.A. Roesner, B. Urbonas & M.B. Sonnen, ASCE, pp. 280-289.
- Yousef, Y.A., Harper, H.H., Wiseman, L.P. & Bateman, J.M. 1985, 'Consequential Species of Heavy Metals in Highway Runoff', *Transp Res Rec*, no. 1017, pp. 56-62.
- Yousef, Y.A., Hvitved-Jacobsen, T., Wanielista, M.P. & Tolbert, R.D. 1986a, 'Nutrient Transformation in Retention/Detention Ponds Receiving Highway Runoff', *J Water Pollut Control Fed*, vol. 58, no. 8, pp. 838-844.
- Yousef, Y.A., Wanielista, M.P. & Harper, H.H. 1986b, 'Design and Effectiveness of Urban Detention Basins', *Urban Runoff Quality Impact and Quality Enhancement Technology, Proceedings of an Engineering Foundation Conference*, New Hampshire, ed. B. Urbonas & L.A. Roesner, ASCE, pp. 338-350.
- Yousef, Y.A., Wanielista, M.P., Hvitved-Jacobsen, T. & Harper, H.H. 1984, 'Fate of Heavy Metals in Stormwater Runoff from Highway Bridges', *Sci Total Environ*, vol. 33, pp. 233-244.

APPENDIX A

Water Quality Improvement in Storage

WATER QUALITY IMPROVEMENT IN STORAGE

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)		Storage Conditions	Other Conditions	References
Ginninderra, Canberra, Australia	Diss. P Total P Susp. solids Ammonia N Oxidised N Total N TOC	0.047 0.134 49.4 0.065 0.515 1.650	0.035 0.093 48.6 0.063 0.461 1.535 13.9	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	75 69 98 97 89 93	Arca 7000 ha 90% rural 10% urban	Pond and marsh Area 1.2 ha Area ratio 0.00017 Vol. 3.9 ML, (0.055 mm)	Low flows	Department of Territories (1986)
	Diss. P Total P Susp. solids Ammonia N Oxidised N Total N TOC	0.054 0.138 180 0.143 0.478 1.835 15.72	0.051 0.124 171 0.139 0.464 1.817 15.25	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	95 90 95 97 97 99			High flows	
Stranger GPT, Canberra, Australia	Susp. solids				63	Area 390 ha Ultimate urbanisation 80% Mean annual flow 1000 ML/yr	Vol. 0.25 ML (0.062 mm) Area -0.02 ha Area ratio 0.00005	3 month study period	Falkland (1994)
Tuggeranong Canberra, Australia	Susp. solids				~81 ~70 ~68 ~59	Area 3800 ha Ultimate urbanisation 70% Mean annual flow 6000 ML/yr	Vol. 110 ML (2.9 mm) Area 4 ha Area ratio 0.0011	4 annual means	Lawrence (1986), Phillips & Goyen (1987)
Katoomba, (New South Wales), Australia	Susp. solids Alkalinity pH Conductivity Chloride Turbidity DO BOD Total P Diss. P TKN Total N Faecal colif. Faecal strep.	3.9 ~26 ~6.5 ~80 9 ~6 72 2.6 0.128 0.051 0.40 0.96 80 951 77 636	3 30 ~7.8 ~80 9 ~6 ~110 3.4 0.056 0.020 0.45 0.57 20 68 60 124	mg/L mg/L pH µS/cm mg/L NTU % mg/L mg/L mg/L mg/L #/100mL #/100mL	77 115 120 100 100 100 153 131 44 39 112 59 25 7 78 20	Area 26 ha 60% low dens resid 30% commercial 10% park & undeveloped 40% impermeable Ave. slope 9%	2 off-stream wetlands in series Vol. 0.60 ML (2.3 mm) Area 0.165 ha Area ratio 0.0063	Baseflow No rain Rain No rain Rain	Swanson (1992), Swanson (1994)
	Susp. solids Total P Total N Faecal colif.	13.5 0.076 1.04 2000	5.5 0.053 0.74 10	mg/L mg/L mg/L #/100mL	41 70 71 0.5			Stormflow	
The Paddocks, (South Australia), Australia	pH Diss. solids Aluminium Cadmium Diss. copper Total copper Total lead Tot. mangan. Total zinc Ammonia N TKN Oxidised N Total N Diss. P Total P TOC Susp. solids Ads. org. hal. BOD ₅	7.2 48 1.43 0.0006 0.026 0.081 0.304 0.100 0.358 0.037 1.43 0.10 1.39 0.033 0.33 12 147 0.040 7	0.034 0.064 0.036 0.036 0.72 0.03 0.76 0.042 0.11 8	pH mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	97 50	Area 59.7 ha Ave. slope 1:22 41% residential gardens 20% parkland & reserves 18% house roofs 18% roads & footpaths 3% institutional 61% pervious 39% impervious	Pond Vol. 2.54 ML (4.3 mm) Area 0.813 ha Max. depth 1.2 m Ave. depth 0.3m Area ratio 0.014	Sequential samples in 1990 & 1991	Tomlinson et al.(1993)

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)	Catchment Conditions	Storage Conditions	Other Conditions	References
	Diss. solids Calcium Magnesium Sodium Potassium Bicarbonate Sulphate	81 10.5 2.6 13.8 2.2 45 5.5	103 15.3 4.1 16.0 2.5 74 4.6	mg/L mg/L mg/L mg/L mg/L mg/L	127 146 158 116 114 164 84			Composite samples in 1992	
	Sulphate Chloride Hardness Alkalinity Cadmium Total copper Total iron Total lead Tot. mangan. Tot. mercury Total nickel Total zinc Ammonia N TKN Oxidised N Total N Diss. P Total P	17 38 37 0.0003 0.06 0.425 0.143 0.012 0.05 0.008 0.228 0.057 0.77 0.28 1.05 0.013 0.101	18 64 61 0.0002 0.372 0.016 0.017 0.1 0.005 0.015 0.035 0.52 0.07 0.60 0.006 0.038	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	106 168 165 67 4 88 11 142 200 62 7 61 68 25 57 46 38				
	Susp. solids True colour Turbidity	52 28 34	6 34 12	mg/L Hazen NTU	12 121 35				
Fremont, California	Susp. solids Ammonia N TKN Nitrate N Ortho P Total P BOD Total lead Total zinc Total copper Total nickel Total chrom. Oil & grease				37 108 78 68 35 54 125 70 58 120 64 45 68	Area 1200 ha 93% urban 7% agriculture	Wetland A Area 2.0 ha Area ratio 0.002	DUST (Demonstrat- ion Urban Stormwater Treatment) Marsh	Meiorin (1986), in Strecker et al.(1992)
	Susp. solids Ammonia N TKN Nitrate N Ortho P Total P BOD Total lead Total zinc Total copper Total nickel Total chrom. Oil & grease				60 105 127 98 72 104 146 73 76 160 112 53		Wetland B Area 2.4 ha Area ratio 0.002		
	Susp. solids Ammonia N TKN Nitrate N Ortho P Total P BOD Total lead Total zinc Total copper Total nickel Total chrom. Oil & grease				49 82 101 88 63 64 118 17 129 83 89 87		Wetland C Area 8.5 ha Area ratio 0.007		
	Susp. solids Ammonia N TKN Nitrate N Ortho P Total P BOD			,	24 84 101 71 32 42 157		Wetland system Area 13 ha Area ratio 0.011 Depth 1.43 m Vol. 185 ML (15 mm)		

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)		Storage	Other	References
	Total lead Total zinc Total copper Total nickel Total chrom. Oil & grease	or Conc.	or Cone.		12 58 119 74 34 125	Conditions	Conditions	Conditions	
Palo Alto, California	Susp. solids Vol. susp. sol. Total N Total P BOD				13 15 63 106 46	Area 7130 ha 62% residential 12% commercial 26% open	Wetland Area 248 ha Area ratio 0.035 Max. depth 1.8 m Vol. 923 ML (13 mm)		ABAG (1979), in Strecker et al.(1992)
Tahoe Basin, California	Susp. solids Ammonia N TKN Nitrate N Total P				46 80 120 50 95	Area 1140 ha residential & forest	Wetland Ave flow 0.24 m ³ /s	Angora Creek	Morris et al. (1981), in Strecker et al.(1992)
	Susp. solids Ammonia N TKN Nitrate N Total P				64 67 188 65 220	Area 1130 ha	Wetland Ave flow 0.25 m ³ /s	Tallac Creek	
Guelph, Ontario, Canada	Susp. solids Diss. solids Volatile solids Non-vol solids Total solids BOD Total lead Faecal coli.	88 75 48 167 215 8 0.04 ~8000	10 212 61 181 242 (4) 0.025 ~2800	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	11 283 127 108 113 50 63 35	Sum of two catchments: (a) Area 18 ha 78% detach.houses 22% school & park (b) Area 14.2 ha 89% detach.houses 11% grassed park	Sum of two basins: (a) dry basin area 1.1 ha (b) wet pond area 0.16 ha min depth 0.3 m Area ratio 0.039 (a)+(b)	Geometric mean of 18 samples during rain in 1991.	Whiteley et al. (1993)
Viborg, Derumark	Susp. solids Conductivity Total P pH Alkalinity Chloride COD Total zinc Diss. zinc Tot. cadmium Dis. cadmium Total lead Total copper Diss. copper	82 84 0.66 6.0 0.11 5.8 40 425 300 1.4 0.4 73 13	15 157 0.30 6.7 0.50 18.9 37 240 110 0.6 0.6 7	mg/L µS/cm mg/L pH meq/L mg/L µg/L µg/L	18 187 45 112 455 326 93 56 37 43 150 10 38 67	Area 22.2 ha Runoff coeff 0.3	Pond Area 0.09 ha Vol. 0.51 ML (2.3 mm) Ave depth 0.6 m. Area ratio 0.0041	5 storm events in spring/ summer	Hvitved- Jacobsen et al. (1987)
	Susp. solids Total P Ortho P Alkalinity Hardness COD Total zinc Tot. cadmium Total lead	22 0.74 0.53 0.71 0.046 60 510 0.5	9 0.23 0.13 0.51 0.046 123 293 0.2 7	mg/L mg/L mg/L meq/L meg/L mg/L µg/L µg/L	41 31 25 72 100 205 57 40 47			5 storm events in autumn	
Burke, Washington D.C.	Susp. solids TKN Soluble KN Oxidised N Total P Soluble P	51.3 5.58 3.96 2.38 0.79 0.40	32.4 3.51 2.38 0.40 0.32 0.17	kg/ha/yr kg/ha/yr kg/ha/yr kg/ha/yr kg/ha/yr kg/ha/yr		Area 11.0 ha 7.4 dwellings/ha 33.5% impervious	Wet pond Vol. 33 ML (300 mm) Depth 2.6 m Area 1.27 ha Area ratio 0.115	259 events	Randail (1982) Athayde et al.(1983)
	Susp. solids COD Total P Soluble P TKN	75 51 0.397 0.223 1.901	(0.067)	mg/L mg/L mg/L mg/L mg/L		Area 19.4 ha 3.0 dwellings/ha 24.2% impervious	Wet pond Vol. 36 ML (186 mm) Depth 2.3 m Area 1.57 ha	geometric mean of 5 (metals) to 41 events	

			<u> </u>						
Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)	Catchment Conditions	Storage Conditions	Other Conditions	References
	Oxidised N Total copper Total zinc	0.702 0.037 0.067	(0.50) (0.033) (0.060)	mg/L mg/L mg/L	72 90 90		Area ratio 0.081 Basin vol/mean event vol = 5.31		
Stedwick, Washington D.C.	Susp. solids COD Total P Soluble P TKN Oxidised N Total zinc	54 45 0.388 0.251 1.895 0.837 0.091	(20) (27) (0.34) (0.26) (1.74) (0.73) (0.052)	mg/L mg/L mg/L mg/L mg/L mg/L	37 59 89 104 92 87 57	Area 13.9 ha 15.1 dwellings/ha 30.5% impervious	Dry pond Vol. 3.52 ML (25 mm)	geometric mean of 9 (metals) to 47 events	
Silk Stream, London, England	Alkanes PAH's	665 129	323 37	μg/L μg/L	49 29	mainly urban	Area ratio ~0.0036 (from map)		Jones et al. (1993)
Lake Apopka, Florida	TKN Ammonia N Nitrate N Diss. P Total P TKN Ammonia N Nitrate N Diss. P Total P	3.76 0.57 1.04 ~0.5 0.66 3.76 0.57 1.04 ~0.5 0.66	(3.57) (0.24) (0.33) (0.12) (0.26) (4.06) (0.27) (0.37) (0.42) (0.61)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	95 42 32 25 39 108 48 36 83 93	100% agricultural	Reservoirs Area 0.36 ha Depth 1.0 m Vol. 3.2 ML Ave. flow 15.7 L/s Ave. det. time 9.4 d Flooded fields Area 0.36 ha Depth 0.2 m Vol. 0.74 ML Ave. flow 6.5 L/s Ave. det. time 4.8 d	Off-stream storage	Reddy et al. (1982) Strecker et al.(1992)
EPCOT Interchange, Florida	pH Diss. ortho. P Total ortho. P Total P Organic N Ammonia N Nitrite N Nitrate N Total N	6.7 140 172 224 1059 366 6 402 1833	6.7 13 25 84 830 103 2.1 82 1017	PH µg/L P µg/L P µg/L P µg/L N µg/L N µg/L N µg/L N µg/L N	100 9 15 38 78 28 35 20 55	Area 8.3 ha Highway surface and surrounds.	Pond Area 1.4 ha Depth 1.1 m Vol. 15 ML (180 mm) Area ratio 0.17	17 events in 1982 & 1983 Negligible outflow, so removals based on lake water quality	
Hidden Lake, Florida	Susp. solids Ammonia N Organic N Nitrate N Total N Ortho P Total P BOD Total lead Diss. lead Total zinc Diss. zinc Tot. cadmium Dis. cadmium Total nickel Total chrom. Diss. chrom. Total copper Diss. copper				17 38 124 20 102 209 93 19 45 44 59 43 29 21 30 30 27 25 60 71	Area 22.4 ha residential	Wetland Area 1.0 ha Area ratio 0.045		Harper et al. (1986), in Strecker et al.(1992)
Jackson Lake, Florida	Susp. solids Ammonia N Nitrate N Total N Total P Diss. P				4 63 30 24 10 22	Area 900 ha urban	Wet pond Area 8.1 ha Area ratio 0.009 Vol. 185 ML (20 mm) Ave depth 2.3 m plus Wetland Area 3.6 ha Area ratio 0.004 Vol. 16.6 ML (2 mm)		Ersy & Cairns (1988), in Strecker et al.(1992)

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)		Storage Conditions	Other Conditions	References
							Ave depth 0.5 m		
Maitland Interchange, Florida	pH Alkalinity Diss. ortho. P	6.1 53 163	7.2 50 11	pH mg/L μg/L P	118 94 7	Area 19.8 ha Highway surface and surrounds.	Pond Area 1.2 ha Depth 1.8 m	Storm events in 1982 & 1983	Hvitved- Jacobsen et al. (1984)
	Total ortho. P Total P Organic N Ammonia N	225 533 2820 137	14 33 556 14	μg/L P μg/L P μg/L N μg/L N	6 6 20 10		Vol. 22 ML (110 mm) Area ratio 0.061	Negligible outflow, so removals	Yousef et al (1986a)
	Nitrite N Nitrate N Total N	4 317 3278	0.3 33 597	μg/L N μg/L N μg/L N	8 10 18			based on pond water quality.	<u> </u>
	pH Conductivity Colour Diss. solids Tot. hardness	6.9 123 10.0 75.9 48.8	6.8 186 10.0 113.3 70.8	pH µmho/cm units mg/L mg/L	99 151 100 149 145			5 storms in 1983	Yousef et al. (1986b) Yousef et al. (1985)
	NCH Alkalinity Bicarbonate Sulphate Chloride	8.0 44.4 54.2 11.9 2.9	20.2 50.4 61.7 26.2 5.1	mg/L mg/L mg/L mg/L mg/L mg/L	252 114 114 220 176				
	Total N Organic N Ammonia N Nitrate N	0.79 0.32 0.09 0.33 0.02	0.51 0.38 0.04 0.15	mg/L N mg/L N mg/L N mg/L N	65 119 44 45 50				
	Nitrite N Total P Ortho. P Calcium Magnesium	0.02 0.05 0.03 27.0 1.17	0.01 0.01 0.0 20.5 4.5	mg/L N mg/L P mg/L P mg/L mg/L	20 76 385				
	Sodium Potassium Silica Humic acids	2.9 1.7 1.9 5	5.6 4.3 1.2 4	mg/L mg/L mg/L mg/L	193 253 63 80				
	Diss. lead Partic. lead Diss. zinc Partic. zinc	33.0 148 40.0 33.9	15.0 7.2 4.7 1.3	μg/L μg/L μg/L μg/L	45 5 12 4			5 storm events in 1982/83	Yousef et al. (1986b)
	Diss. copper Partic. copper Diss. P Partic. P	28.6 10.0 42.5 31.7	14.4	րջ/L µg/L µg/L µg/L µg/L	50 23 10 89				
	Organic N Ammonia N Oxidised N	928 176 295	826 34.1 39.8	μg/L μg/L μg/L	89 19 13				
	Dis. cadmium Tot. cadmium Diss. zinc Tot. zinc	1.1 1.9 50 347	5.8 6.4	μg/L μg/L μg/L μg/L	73 53 12 2			15 storm water samples in 1983	Yousef et al. (1984)
	Diss. copper Tot. copper Diss. lead Tot. lead Diss. nickel	32 60 43 723 3.2	14 16 16 22 1.8	μg/L μg/L, μg/L μg/L μg/L	44 27 37 3 56				
	Tot. nickel Diss. chrom. Tot. chrom. Diss. iron Tot. iron	28 3.3 10 48 1176	2.3 2.3 3.4 20 61	μg/L μg/L μg/L μg/L μg/L	8 70 34 42 5			1	
Orlando, Florida	Susp. solids Diss. solids Total solids	~30 ~155 ~185	-120	mg/L mg/L mg/L	50 77 90	Area 16.8 ha 33% urban road 27% forest	Pond Area 0.080 ha Depth 2.4 - 3.4 m	11 measured storms	Martin & Miller(1987
	COD Total lead Total zinc Total N Org. N Ammonia N	~0.062 ~0.085 ~1.4	~0.099	mg/L mg/L mg/L	96 69 117 90 95 43	27% high dens res 13% low dens res	Dead storage 9 mm Live storage 5 mm Tot. storage 14 mm Area ratio 0.0047	EMC method	Martin (1988)

		, ,	١			01			D. C
Location	Contaminant	Input Load or Conc.	Output Load or Conc.		Output Load or Conc. (%)		Storage Conditions	Other Conditions	References
-	Total P Ortho. P Chloride Sulphate Bicarbonate Calcium Magnesium Sodium Potassium	~0.16 ~5.8	~0.115 ~5.7	mg/L mg/L	72 65 99 106 100 101 99 97 93				
	Susp. solids Diss. solids Total solids COD Total lead Total zinc Total N Org. N Ammonia N TOC Total P Ortho. P Chloride Sulphate Bicarbonate Calcium Magnesium Potassium	~15 ~120 ~166 ~0.043 ~0.099 ~1.26 ~0.115 ~5.7	~8 ~103 ~138 ~0.013 ~0.049 ~1.20 ~0.112 ~6.3	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	56 86 83 100 31 49 95 84 173 99 97 121 110 97 88 93 94 104 111		Wetland Area 0.30 ha Depth 0 - 1.5 m Dead storage 4 mm Live storage 16 mm Tot. storage 20 mm Area ratio 0.018		
Palm Beach, Florida					50 83 84 67 38 65	Area 952 ha residential & golf course	Wetland Area 120 ha Area ratio 0.126		Blackburn et al.(1986), in Strecker et al.(1992)
Springhill, Florida	Susp. solids Ortho. P Total P Oxidised N Ammonia N TKN Susp. solids Ortho. P Total P Oxidised N Ammonia N TKN	3.5 0.205 0.307 0.134 0.09 1.05 2.6 0.137 0.171 0.115 0.07 1.41	3.5 0.056 0.111 0.015 0.16 1.19 2.9 0.049 0.098 0.018 0.15 1.16	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	100 27 36 11 178 113 112 36 57 16 214 82	Area 15.2 ha Single family resid. 100 dwellings 40% impervious	Pond Area 1.0 ha Ave. depth 1.8 m Vol. 18 MIL (118 mm) Area ratio 0.066	6 storm events in 1985/86 Routine sampling	Holler (1989)
Tampa Office Pond, Florida	Susp. solids Organic N Ortho P Total P Total zinc				36 104 35 45 66	Area 2.6 ha commercial	Wetland Area 0.14 ha Area ratio 0.056 Max. depth 0.5 m Vol. 0.39 ML (15 mm)		Rushton and Dyc(1990), in Strecker et al.(1992)
Lake Ellyn, Chicago, Illinois	Susp. solids Chloride COD BOD TOC Ammonia Oxidised N Total P Diss. P Total copper Diss. copper Total lead Diss. lead Total zinc Diss. zinc	118 84 69 11.4 9.9 0.17 0.86 0.44 0.13 0.026 0.006 0.137 0.005 0.113	0.004 0.018 0.011 0.023	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	13 133 55 75 86 156 10 40 28 19 58 13 232 20 34	Area 216 ha 34% impervious 80% low dens res 3% high dens res 5% commercial 5% institutional 7% open space/ water Inflow 727 ML 65% stormflow 35% baseflow	Lake Vol. 55 ML (25 mm) Ave. depth 1.5 m Max. depth 2.0 m Shoreline 900 m Ave det time 674 hr Area 3.67 ha Area ratio 0.017 Basin vol/mean event vol = 10.7	Annual mean over 1980/81	

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)		Storage Conditions	Other Conditions	References
St. Agatha, Maine	Susp. solids Vol. susp. sol. Total P				5 6 8	Area 7.3 ha 100% agriculture	Basin, swale, wetland, & pond Area 0.61 ha Area ratio 0.083 Max. depth 2.4 m Vol. 1.8 ML (25 mm)	Long Lake Treatment System	Jolly (1990), in Strecker et al. (1992)
Montgomery County, Maryland	Susp. solids COD Total P TKN Oxidised N Total zinc Total lead	42 21 0.30 1.65 0.68 0.075	16.8 12.6 0.26 1.16 0.68 0.030	mg/L mg/L mg/L mg/L mg/L mg/L	~40 ~60 ~85 ~70 ~100 ~40 ~20	Area 13.9 ha Impervious 19.2% Ave. slope 0.047 Townhouse/Garden apartments	Pond NPS storage 1.08 ML Volume 8 mm Typical detention time about 6 hours	Medians of 33 storm events	Grizzard et al. (1986)
Lansing, Michigan	Susp. solids BOD COD Total P Soluble P TKN Oxidised N Total copper Total lead Total zinc	172 8 72 0.394 0.047 1.988 0.875 0.014 0.170 0.149	(1.77) (0.88) (0.015) (0.10)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	106 126 85 110 126 89 101 109 61	Area 66 ha mixed land use Pop. dens. 12 p/ha 28% impervious	Grace Street North Oversize pipe Basin vol/mean runoff vol = 0.05	geometric mean of 9 to 23 events	Athayde et al. (1983)
	Susp. solids BOD COD Total P Soluble P TKN Oxidised N Total copper Total lead Total zinc	188 5 60 0.435 0.059 1.713 0.742 0.025 0.115 0.223	(1.80) (0.89) (0.019)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	78 96 103 94 100 105 120 75 83 93	Area 30 ha 52% industrial Pop. dens. 12 p/ha 39% impervious	Grace Street South Oversize pipe Basin vol/mean runoff vol = 0.17	geometric mean of 7 to 20 events	
	Susp. solids BOD COD Total P Soluble P TKN Oxidised N Total copper Total lead Total zinc	85 9 64 0.198 0.043 1.490 0.775 0.015 0.111 0.121	, , ,	mg/L mg/L mg/L mg/L mg/L	13 48 48 31 44 70 46 47 7 42	Area 12 ha mixed land use Pop. dens. 27 p/ha 68% impervious	Waverly Hills Basin vol/mean runoff vol = 7.57	geometric mean of 16 to 35 events	
Pittsfield- Ann Arbor, Michigan	Susp. solids BOD COD Total P Soluble P TKN Oxidised N Total lead Total zinc	57 6 0.19 0.036 0.95 0.38 0.041	(0.85) (0.35)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	62 83 77 72 102 89 92 41 78	Area 1973 ha 45% residential 19% commercial 13% agriculture 23% open	Pond Area 10.2 ha Area ratio 0.0052 Max. depth 1.8 m Vol. 216 ML (11 mm) Basin vol/mean runoff vol = 0.52	geometric mean of 5 to 6 events	Scherger & Davis(1982), in Strecker et al.(1992) Athayde et al.(1983)
Swift Run	Susp. solids BOD COD Total P Soluble P TKN Oxidised N Total lead	80 3 29 0.134 0.039 1.116 1.033	(14) (2.7) (30) (0.18) (0.031) (0.84) (0.24)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	17 89 103 138 79 75 23 14	Area 489 ha 11% residential 2% commercial 72% agriculture 15% open Pop. dens. 5 p/ha 4% impervious	Wetland Area 10.3 ha Area ratio 0.021 Max. depth 0.9 m Vol. 74 ML (15 mm) Basin vol/mean runoff vol = 1.02	geometric mean of 5 events	
Traver	Susp. solids BOD COD Total P Soluble P TKN	33 2 25 0.091 0.033 0.889	(0.057) (0.012)			Area 933 ha 90% open/ nonurban 6% impervious	Wet basin Basin vol/mean runoff vol = 1.16	geometric mean of 5 events	

	,		·		1	F	1	1	1
Location	Contaminant	Input Load	Output Load	Units	Output Load		Storage	Other	References
		or Conc.	or Conc.		or Conc. (%)	Conditions	Conditions	Conditions	
	Oxidised N	1.108	(0.80)	mg/L	72			}	
	Total zinc	100	(0.00)	ing/L	81	ł			
	TOMA ZAMO								
		[T	Ĭ			
Ramsay-	Susp. solids				37	Area 459 ha	Pond	Tanners	Oberts et al.
Washington,	Vol. susp. sol.				50	residential	Area 0.028 ha	Lake	(1989), in
Minnesota	TKN			1	93		Area ratio 0.00006		Strecker et
	Nitrate N				99	1	Depth 0.9 m		al.(1992)
	Total N		ļ		95	l	Vol. 0.12 ML		(1)
	Ortho P				80	į	(.027 mm)		1
	Diss. P				114	1	(.027 mm)		
						·			İ
	Total P		1		93				
	Total lead		1		41				
	Susp. solids		ĺ		15	Area 2113 ba	Pond	McKnight	
	Vol. susp. sol.				43	residential	Area 2.24 ha	Lake	1
	TKN		ŧ		85	i containai	Area ratio 0.0011	Lake	i
	Nitrate N		ļ	l.	89	1	Depth 1.5 m		ŀ
			[i		1			j
	Total N		ļ		86]	Vol. 16.2 ML		1
	Ortho P		1	i	66		(0.77 mm)		
	Diss. P				88]			1
	Total P		i		66	1	1		1
	Total lead		1		37	1			1
					٠				
	Susp. solids				15	Area 215 ha	Wetland	Lake Ridge	
	Vol. susp. sol.				33	residential	Area 0.38 ha		
	TKN				72		Area ratio 0.0018		
	Nitrate N		l		83	į.	Depth 1.5 m		1
	Total N	i			76	İ	Vol. 2.5 ML	1	
	Ortho P	ł			105		(1.1 mm)	ļ	
	Diss. P	•			92		(1.1 11111)	1	
	Total P	[63			1	
	Total lead	ţ						į	· ·
	l otal lead	ļ			48	i		ţ	
	Susp. solids	1			80	Area 69 ha	Wetland & pond	Carver	Į
•	Vol. susp. sol.			1	99	residential			1
	TKN		l			residential	Area 0.15 ha	Ravine	ì
			}		110		Area ratio 0.0022		
	Nitrate N			ĺ	91	Į.	Depth 0.6 m		
	Total N		}		106	ļ	Vol. 1.2 MIL		
	Ortho P]		103		(1.8 mm)	i	
•	Diss. P	ŧ	i		99	ł	,	1	
	Total P	Į			99			1	
	Total lead				94				}
Passeilla	Sum anlida					2423			
Roseville, Minnesota	Susp. solids Vol. susp. sol.				9 5	Area 243 ha urban	Pond	McCarrons Wetland	Wotzka &
MINITESOLA			ļ	}		uroan	Area 12.0 ha	Welland	Obert
	TKN		ĺ	1	12		Area ratio 0.050		(1988),
	Nitrate N			1	40				in Strecker
_	Total N				15				et al. (1992)
	Diss. P				43		i		' '
	Total P		ļ		22		1		
	COD		ł		10	i	l l	1	
	Total lead				15		•	Ì	1
	<u> </u>				ŀ				Ì
	Susp. solids				13		Wetland		
	Vol. susp. sol.				13	1	Area 2.5 ha	1	I
	TKN				74	1	Area ratio 0.010	1	!
	Nitrate N				78	1		1	I
	Total N			!	76	1		1	I
	Diss. P			l	75	j	1	ł	ļ
	Total P				64	!		1	ĺ
	COD						}	ł	I
	Total lead				21 32			1	
	1 Ores 1040				32			1	
	Susp. solids				6		System		1
	Vol. susp. sol.				6		Area 14.5 ha		!
	TKN				15				1
	Nitrate N						Area ratio 0.060		}
					37		Vol. 11.9 ML		ł
	Total N				17		(4.9 mm)		ŀ
	Diss. P		ĺ		47				1
	Total P				22		}		ł
	COD				7		1		
	Total lead				10		1		
Twin Cities,	Susp. solids				5	Area 284 ha	Wetland/pond	Fish Lake	Brown
Minnesota	Vol. susp. sol.				22	30% residential	Area 6.5 ha		(1985)
			'	•				•	1/4/05/

Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)		Storage Conditions	Other Conditions	References
	Organic N Ammonia N Total N Diss. P Total P				64 100 120 72 63	5% commercial 12% agriculture 53% open	Area ratio 0.023 Ave depth 1.2 m Vol. 79 ML (28 mm)		in Strecker et al.(1992)
	Susp. solids Vol. susp. sol. Organic N Ammonia N Total N Diss. P Total P			,	12 20 136 50 62 75 73	Area 834 ha 12% residential 1% commercial 34% agriculture 53% open	Wetland Area 91 ha Area ratio 0.109 Ave. depth 1.2 m Vol. 1110 ML (133 mm)	Lake Elmo	
	Susp. solids Vol. susp. sol. Organic N Anmonia N Total N Diss. P Total P				120 80 93 75 80 130 143	Area 1000 ha 13% residential 2% commercial 30% agriculture 55% open	Wetland Area 31 ha Area ratio 0.031 Ave. depth 0.9 m Vol. 284 ML (28 mm)	Lake Riley	
	Susp. solids Vol. susp. sol. Organic N Ammonia N Total N Diss. P Total P				400 120 89 186 114 110 107	Area 2260 ha 5% residential 1% commercial 57% agriculture 37% open	Wetland Area 26 ha Area ratio 0.011 Ave. depth 1.2 m Vol. 315 ML (14 mm)	Spring Lake	
Waseca, Minnesota	Susp. solids Ammonia N TKN Diss. P Ortho P Total P				24 45 75 60 48 46	Area 433 ha urban	Wetland Area 21.4 ha Area ratio 0.049 Depth 0.15 m Vol. 12 ML (2.8 mm)	Clear Lake	Barten (1987) in Strecker et al.(1992)
Wayzata, Minnesota	Susp. solids Ammonia N Total P Total lead Total zinc Total copper Tot. cadmium				6 144 22 6 18 20 33	Area 26.4 ha residential & commercial	Wetland Area 3.1 ha Area ratio 0.117		Hickok et al. (1977), in Strecker et al.(1992)
Frisco Lake, Rolla, Missouri	Susp. solids Total P Organic N Ammonia N Hardness COD	103 0.32 0.47 0.35 182 42	13 0.12 0.37 0.46 76 20	mg/L mg/L mg/L mg/L mg/L	12 35 78 132 42 46	Population 6.3 p/ha Ave. slope 0.010 Area 44.9 ha 28% single fam res 12% multi fam res 8% commercial 1% light industrial 17% public use 32% pavement 2% open space	Lake Area 2.3 ha Max depth 1.71 m Vol. 22.7 ML (51 mm) Avc. det. time 28 days Area ratio 0.051	Average of all flows over 6 months	Oliver and Grigoro- poulos(1981
East Brunswick, New Jersey	Total petroleum hydrocarbons	3438	43	g	1	Area 40.5 ha Condominium development.	Dry pond Area 2.4 ha Area ratio 0.059	Sum of 3 storms	Maldonato & Uchrin (1994)
Hillsborough New Jersey	Total solids COD TKN Total P	347 30.4 1.24 0.47	185 24.1 1.49 0.27	mg/L mg/L mg/L mg/L	54 80 120 58	Area 258 ha 25% high dens res 17% low dens res 22% const. area 10% grassland	Pond Max. depth 2.4 m Area ratio ~0.005 (from map) Volume ~8 mm	Average concentration for storm of 17.5 mm	Ferrara & Witkowski (1983)
	Total solids COD TKN Total P	282. 32.5 1.33 0.32	0.33	mg/L mg/L mg/L mg/L	64 89 120 103	7% cropland 19% forested Dry weather flow is negligible		Storm of 10.0 mm	
	Total solids COD TKN	170 34.0 1.05	145 30.7 0.84	mg/L mg/L mg/L	85 90 80			Storm of 2.5 mm	

	,	•			,	y	, 	, ,	,
Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)	Catchment Conditions	Storage Conditions	Other Conditions	References
-	Total P	0.34	0.31	mg/L	91		·		
	Total solids	311	180	mg/L	58			Weighted	
	COD	31.4	26.2	mg/L	84			mean of 3	
	TKN Total P	1.25 0.41	1.47 0.29	mg/L mg/L	117		ĺ	storms	
Unqua, Long Island,	Susp. solids TOC	65	(43)	mg/L mg/L	66 74	100% residential	Wet Basin Basin vol/mean	geometric mean of	Athayde et al. (1983)
New York	Total P	0.229	(0.14)	mg/L	62		runoff vol = 3.07	8 events	
	TKN Oxidised N	1.408 1.533	(1.84) (1.69)	mg/L mg/L	131 110				
	Total lead	0.088	(0.019)		22				[
Charlotte.	Susp. solids	135	62	mg/L	46	Two adjacent	3 ponds	Event mean	Wu et al.
Nonh	Total P	0.14	0.11	mg/L	76	catchments of area	Area ratio 0.0075	conc. for	(1988)
Carolina	TKN	0.88	0.70	mg/L	80	26 ha (a) and	Vol. 15.1 ML	5 storms in	,
	Zinc Iron	0.070 6.1	0.041 3.4	mg/L mg/L	58 55	122 ha (b), and downstream	(9 mm)	1986/87	
	l		1	•	1	catchment of 177		Input concen-	
	Susp. solids Total P	135 0.14	14 0.10	mg/L mg/L	10 74	ha, including (a) and (b) above.	Area ratio 0.0135 Vol. 21.4 ML	trations are claimed to be	
	TKN	0.88	0.39	mg/L	44	(a) and (b) above.	(14 mm)	represent-	
	Zinc Iron	0.070 6.1	0.033 1.0	mg/L	47			ative of the	
			1.0	mg/L	16			whole area	
	Susp. solids Total P	135 0.14	57 0.08	mg/L	42	,	Area ratio 0.0227		
	TKN	0.14	0.08	mg/L mg/L	60 59		Vol. 69.1 ML (39 mm)	1	
	Zinc	0.070	0.042	mg/L	60		(
•	Iron 	6.1	3.1	mg/L	51				
	Susp. solids	135	12	mg/L	9	<u> </u>	Area ratio 0.0751	1	
	Total P TKN	0.14 0.88	0.11 0.83	mg/L mg/L	77 94	ĺ	Vol. 47.7 ML (182 mm)		
	Zinc	0.070	0.015	mg/L	21		(102 mm)		
	Iron	6.1	1.1	mg/L	18				
Austin,	COD	43.5	41.6	kg	96	Area 153 ha	Lake	Mean of 2	Castaldi
Texas	TOC Ammonia N	30.5 1.55	44.6 1.14	kg kg	147 74	39% impervious Slope 4.6%	Vol. 21.5 ML (14 mm)	events	(1983)
	Total N	22.3	14.6	kg	66	medium dens res	Area ratio ~0.02	İ	
	Total P Susp. solids	0.63 192	0.59 150	kg kg	94 78				
	COD	68	(65)	mg/L	, ,,			Mana af all	
	TOC	18.9	(28)	mg/L				Mean of all events	
	Ammonia N Total N	1.40	(1.04)	mg/L					
	Total P	5.14 0.31	(3.4) (0.29)	mg/L mg/L			1		
	Susp. solids	127	(99)	mg/L					
Lake	Susp. solids	301	20	Gg	7	Area 724,000 ha	Lake	Wet year	Baca et al.
Houston,	Nitrate	2.88	2.10	Gg	73	73% forest	Vol180,000 MIL	(1973)	(1982)
Texas	Phosphorus	2.44	1.57	Gg	64	14% pasture Mean flow in 1975	(25 mm) Area 5200 ha		
	Susp. solids	159	36	Gg C-	23	59 m ³ /s	Area ratio 0.0072	Average year	
	Nitrate Phosphorus	1.80 1.46	1.78 0.71	Gg Gg	99 48	(1857 GL)		(1975)	
	Susp. solids	81.5	8.5	Gg	10			Dry year	
	Nitrate	1.13	0.23	Gg	21			(1977)	
	Phosphorus	0.91	0.15	Gg	17				
	Susp. solids	86	19	mg/L	23			Mean conc.	
	Nitrate Phosphorus	0.97 0.79	0.96 0.38	mg/L mg/L	99 48			in average year (1975)	
						· ·		Jun (17/3)	
The	Ortho. P	0.005	0.015	mg/L	300	Area 332 ha	Lakes	One storm of	Characklis et
Woodlands, Texas	Total P Ammonia	0.11	0.10	mg/L	91	Developing resid-	Vol. 135 ML	3.97 inches	al. (1978)
ı ÇAAS	Ammonia Nitrite	0.11 0.009	0.16 0.032	mg/L mg/L	145 356	ential, commercial, restricted industrial,	(41 mm) Area 6.7 ha		Characklis et al. (1989)
	Nitrate	0.15		mg/L			Area ratio 0.020		(====)

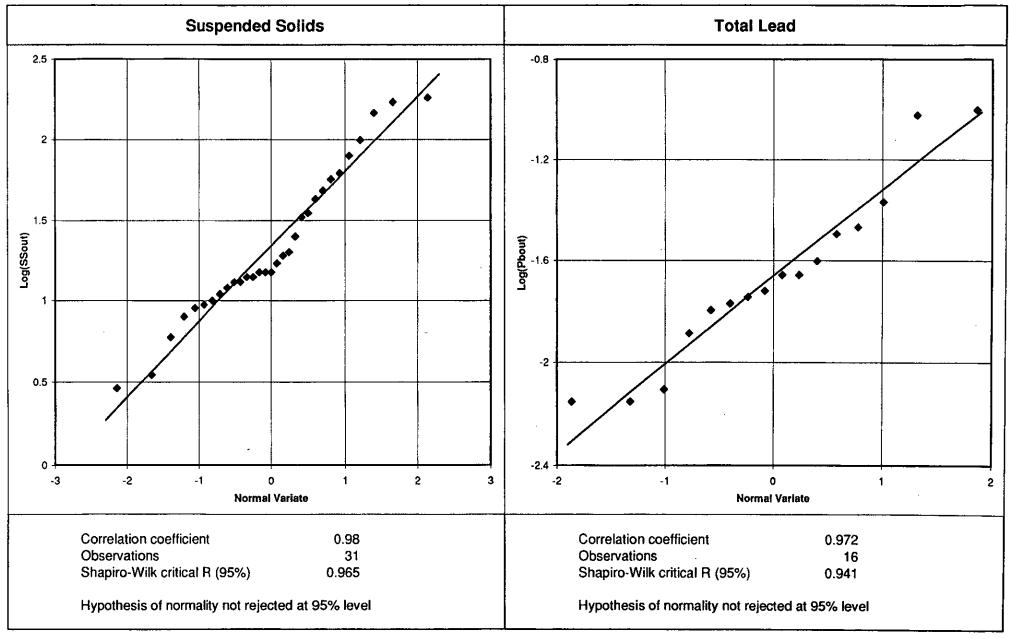
Location	Contaminant	Input Load or Conc.	Output Load or Conc.	Units	Output Load or Conc. (%)	Catchment Conditions	Storage Conditions	Other Conditions	References
	TKN Susp. solids TOC Total COD Sol. COD Conductance Turbidity	TOC 16.2 13.6 mg/L Total COD 63.7 41.8 mg/L Sol. COD 32 26.4 mg/L Conductance 85 130 µmhos	70 19 84 66 83 153 43		2 ponds in series Receive stormwater runoff and treated sewage effluent				
Scattle, Washington	Susp. solids	9.6	9.45	mg/L	98	Area 31 ha residential	Dry pond Vol. 0.430 ML (1.4 mm)	Mean of 6 storms	Dally (1984)
	Susp. solids Oil & grease	88 9.9	79 7.5	mg/L mg/L	90 76	Area 6 ha bus depot	Wet pond Vol. 0.17 ML (2.8 mm)	Mean of 5 storms	
	Total P	118	173	μg/L P	148		(2.8 mm)	Mean of 3	
	Tot. cadmium	0.79		μg/L P	131			storms	
	Sol. cadmium	0.43	0.95	μg/LP	219		l i	Storins	
	Total lead	30	32	μg/L N	108		İ		İ
	Sol. lead	6.3	11.8	μg/L N	187				
	Total zinc	530	730	μg/L N	138				
	Sol. zinc	94	66	μg/L N	69				
King County, Washington	Susp. solids Nitrate N Total P				86 96 102	Area 187 ha urban	Wetland Area 2.0 ha Area ratio 0.011 Vol. 0.53 ML (0.28 mm)	B3I	Reinelt et al. (1990), in Strecker et al.(1992)
1	Susp. solids Nitrate N Total P				44 80 102	Area 87 ha rural	Wetland Area 1.5 ha Area ratio 0.017 Vol. 0.74 ML (0.85 mm)	PC12	

Notes:

Approximate. For example, data scaled from graphs.

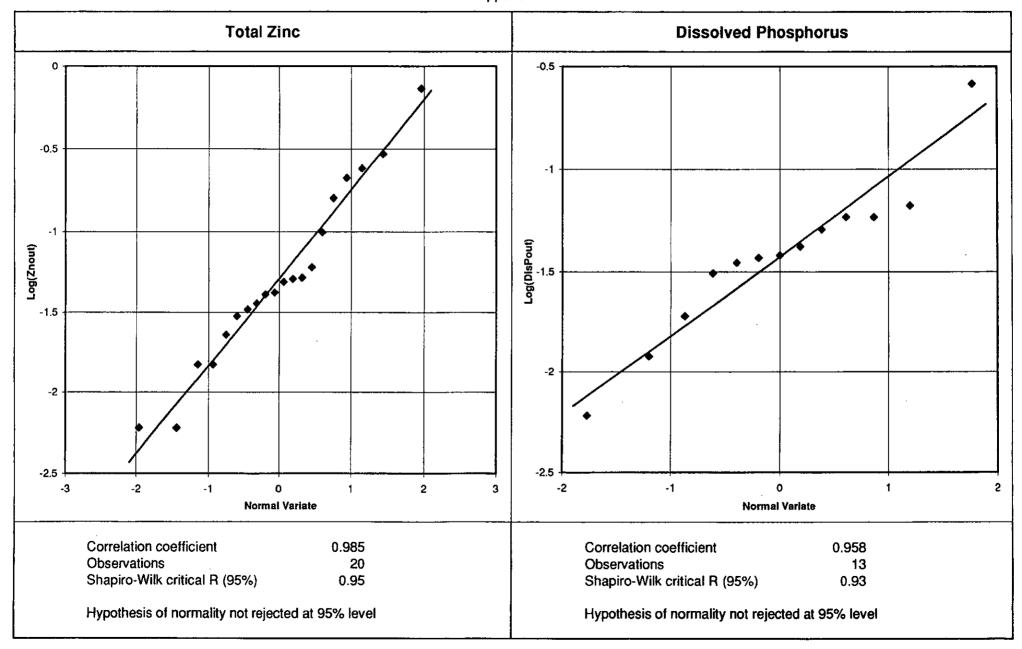
Derived data. For example, output concentrations derived from input concentration data and % change data from different sets of events.

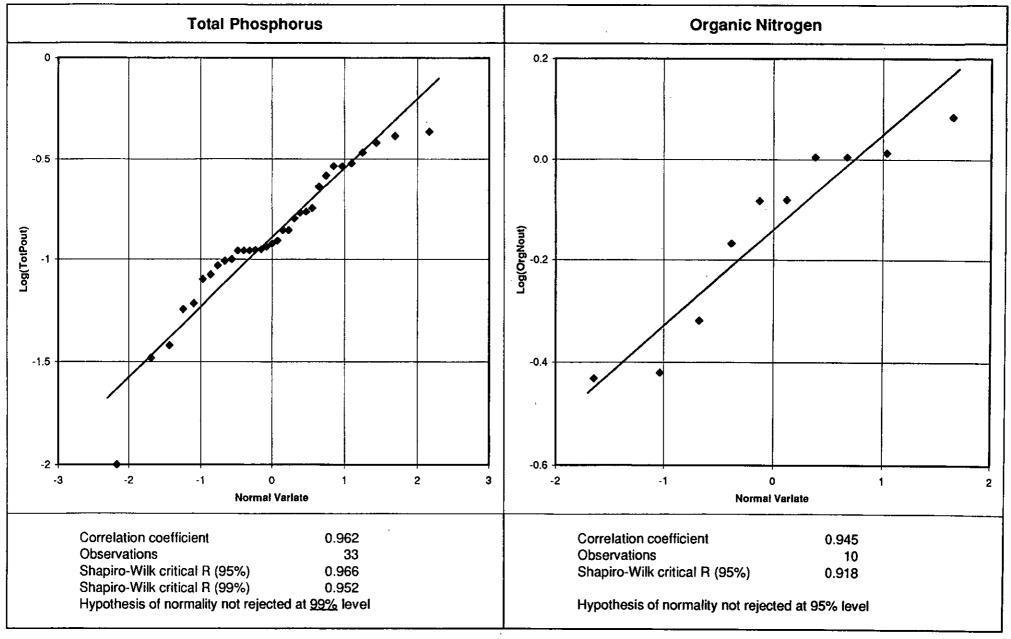
Megalitres. 1 megalitre = 1000 kilolitres = 1000 cubic metres.


Millimetres. Storage in millimetres is the basin storage divided by the total catchment area.

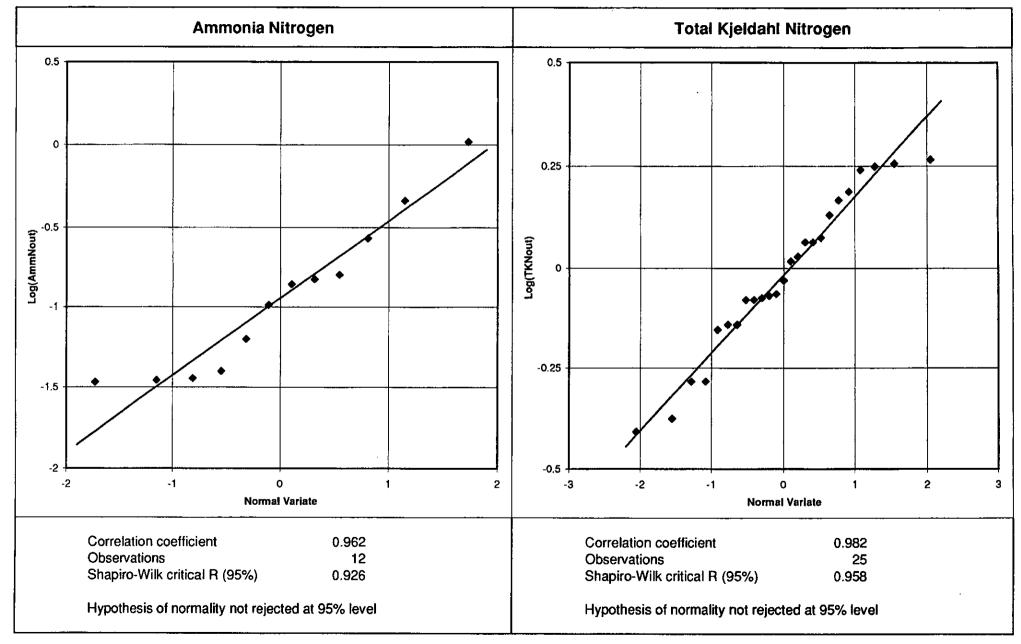
() ML

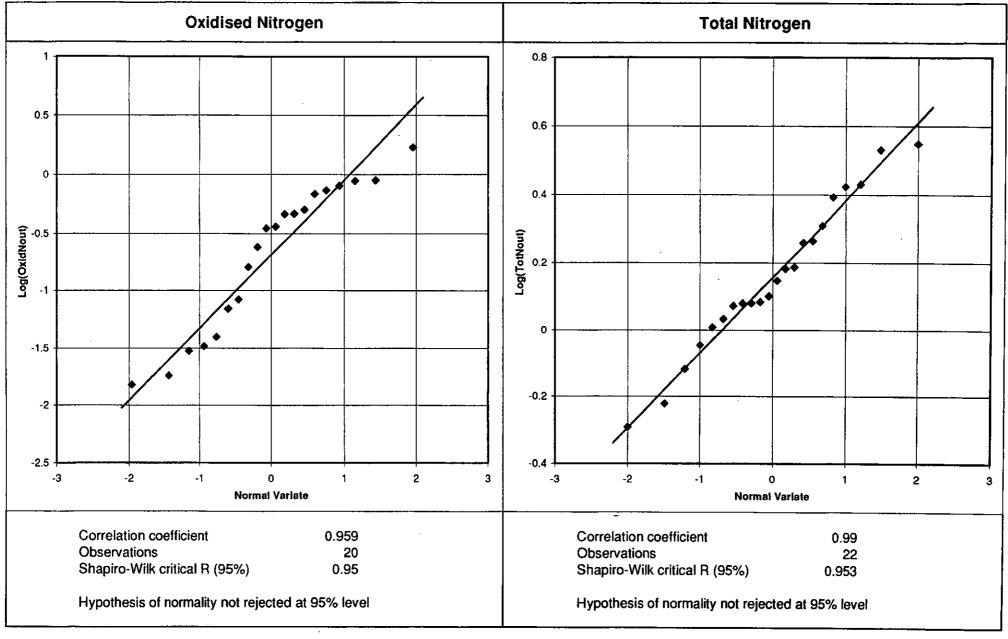
mm


APPENDIX B


Log-Normal Distributions of Output Concentrations

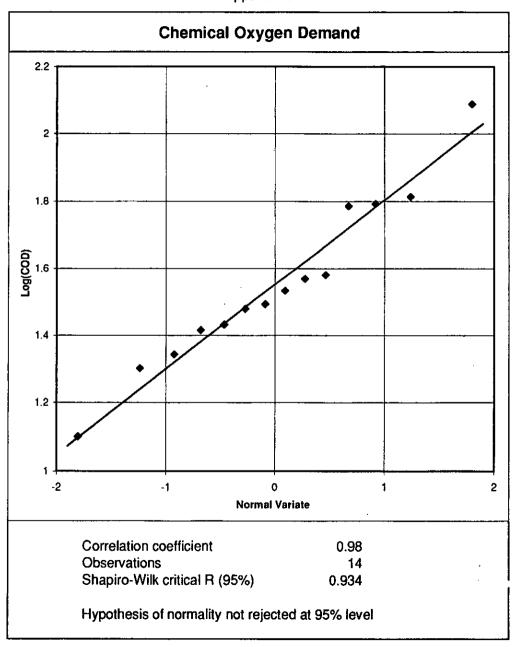
Page 1


Appendix B



Page 3

Appendix B



Page 4

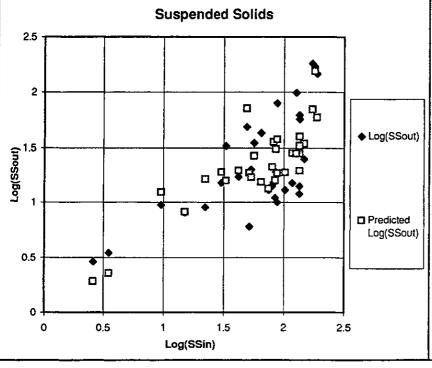
Page 5

Appendix B

Page 6

APPENDIX C

Multiple Regressions


Suspended Solids (SS)

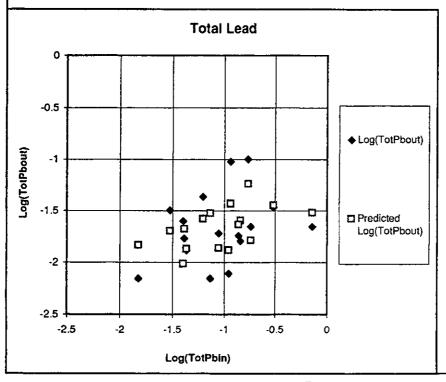
Arearatio is the best measure of pond size, followed by storage.

Pond depth is not a significant explanatory variable.

SS (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	0.202	0.251	0.804	0.428	-0.313	0.717	Multiple R	0.699
Log(depth)	-0.285	0.221	-1.289	0.208	-0.739	0.168	R Square	0.488
Log(SSin)	0.644	0.137	4.691	6.5E-05	0.363	0.925	Adj R Sq	0.452
							Std Error	0.344
SS (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	0.511	0.238	2.146	0.041	0.023	0.999	Multiple R	0.787
Log(storage)	-0.220	0.064	-3.454	1.8E-03	-0.351	-0.090	R Square	0.620
Log(SSin)	0.597	0.119	5.029	2.6E-05	0.354	0.840	Adj R Sq	0.593
			-				Std Error	0.296
SS (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.338	0.236	-1.434	0.163	-0.821	0.145	Multiple R	0.809
Log(arearatio)	-0.313	0.078	-3.995	4.3E-04	-0.473	-0.152	R Square	0.655
Log(SSin)	0.598	0.113	5.312	1.2E-05	0.368	0.829	Adj R Sq	0.630
See graph below	N						Std Error	0.282
SS (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.665	0.236	7.054	1.1E-07	1.182	2.149	Multiple R	0.685
Log(arearatio)	-0.315	0.078	-4.012	4.1E-04	-0.475	-0.154	R Square	0.470
Log(SSin)	-0.406	0.113	-3.599	1.2E-03	-0.637	-0.175	Adj R Sq	0.432
					-		Std Error	0.283

Log(SSin)	Log(S	SSout)	Log(%SSout)		
Mean	1.770	Mean	1.338	Mean	1.567	
Std Dev	0.465	Std Dev	0.464	Std Dev	0.375	
Count	31	Count	31	Count	31	

Page 1

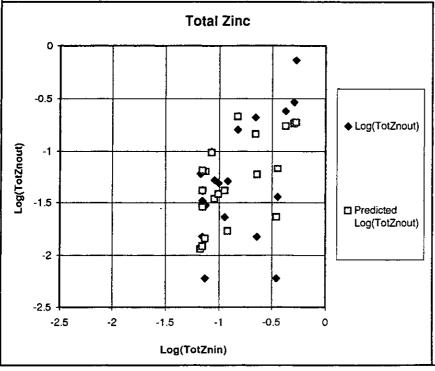

Total Lead (TotPb)

Arearatio is the best measure of pond size.

Depth and storage are not significant explanatory variables.

TotPb (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-1.392	0.245	-5.690	7.4E-05	-1.921	-0.864	Multiple R	0.312
Log(depth)	0.019	0.307	0.060	0.953	-0.644	0.681	R Square	0.097
Log(TotPbin)	0.260	0.219	1.184	0.257	-0.214	0.733	Adj R Sq	-0.041
							Std Error	0.351
TotPb (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-1.083	0.310	-3.499	3.9E-03	-1.752	-0.415	Multiple R	0.475
Log(storage)	-0.192	0.131	-1.466	0.166	-0.474	0.091	R Square	0.225
Log(TotPbin)	0.354	0.213	1.660	0.121	-0.107	0.814	Adj R Sq	0.106
							Std Error	0.326
TotPb (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-1.914	0.309	-6.204	3.2E-05	-2.581	-1.248	Multiple R	0.596
Log(arearatio)	-0.378	0.166	-2.279	0.040	-0.736	-0.020	R Square	0.355
Log(TotPbin)	0.451	0.204	2.217	0.045	0.012	0.891	Adj R Sq	0.256
See graph below	W						Std Error	0.297
TotPb (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	0.071	0.308	0.231	0.821	-0.595	0.737	Multiple R	0.791
Log(arearatio)	-0.384	0.166	-2.317	0.037	-0.742	-0.026	R Square	0.625
Log(TotPbin)	-0.553	0.203	-2.718	0.018	-0.993	-0.114	Adj R Sq	0.567
							Std Error	0.297

Log	g(TotPbin)	Log(To	otPbout)	Log(%TotPbout)		
Mean	-1.042	Mean	-1.663	Mean	1.381	
Std Dev	0.414	Std Dev	0.344	Std Dev	0.452	
Count	16	Count	16	Count	16	


Page 2

Total Zinc (TotZn)

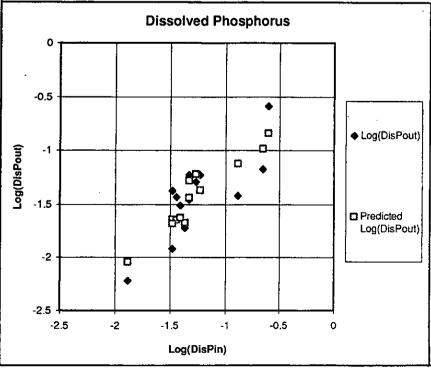
Arearatio is the best measure of pond size, followed by storage Depth is not a significant explanatory variable.

TotZn (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.663	0.414	-1.601	0.128	-1.538	0.211	Multiple R	0.461
Log(depth)	-0.057	0.566	-0.101	0.921	-1.252	1.138	R Square	0.213
Log(TotZnin)	0.736	0.483	1.524	0.146	-0.283	1.754	Adj R Sq	0.120
	_						Std Error	0.510
TotZn (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.569	0.273	-2.083	0.053	-1.145	0.007	Multiple R	0.672
Log(storage)	-0.476	0.175	-2.721	0.015	-0.846	-0.107	R Square	0.451
Log(TotZnin)	0.190	0.367	0.516	0.612	-0.585	0.965	Adj R Sq	0.387
							Std Error	0.426
TotZn (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-2.384	0.522	-4.567	2.7E-04	-3.486	-1.283	Multiple R	0.756
Log(arearatio)	-0.727	0.193	-3.768	1.5E-03	-1.134	-0.320	R Square	0.571
Log(TotZnin)	0.300	0.293	1.025	0.320	-0.317	0.917	Adj R Sq	0.520
See graph below	w						Std Error	0.377
TotZn (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.338	0.511	-0.661	0.517	-1.416	0.740	Multiple R	0.685
Log(arearatio)	-0.714	0.189	-3.783	1.5E-03	-1.112	-0.316	R Square	0.469
Log(TotZnin)	-0.676	0.286	-2.362	0.030	-1.280	-0.072	Adj R Sq	0.406
							Std Error	0.369

Log(TotZnin)		Log(To	tZnout)	Log(%TotZnout)	
Mean	-0.850	Mean	-1.291	Mean	1.561
Std Dev	0.326	Std Dev	0.544	Std Dev	0.478
Count	20	Count	20	Count	20

Page 3

Dissolved Phosphorus (DisP)


None of the measures of pond size are statistically significant at the 5% level.

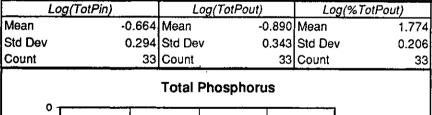
Storage is the best measure, followed by arearatio.

Coefficient of input conc not sig diff from 1 (i.e. % out may be independent of input).

DisP (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.137	0.284	-0.481	0.641	-0.770	0.496	Multiple R	0.836
Log(depth)	-0.318	0.251	-1.268	0.233	-0.878	0.241	R Square	0.699
Log(DisPin)	1.050	0.230	4.574	1.0E-03	0.539	1.562	Adj R Sq	0.638
							Std Error	0.236
DisP (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.088	0.273	-0.321	0.754	-0.697	0.521	Multiple R	0.852
Log(storage)	-0.108	0.065	-1.651	0.130	-0.253	0.038	R Square	0.725
Log(DisPin)	1.001	0.195	5.135	4.4E-04	0.567	1.436	Adj R Sq	0.670
See graph below	W			_			Std Error	0.225
DisP (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.496	0.270	-1.842	0.095	-1.097	0.104	Multiple R	0.848
Log(arearatio)	-0.126	0.081	-1.563	0.149	-0.306	0.054	R Square	0.719
Log(DisPin)	0.957	0.190	5.038	5.1E-04	0.534	1.380	Adj R Sq	0.663
							Std Error	0.228
DisP (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.911	0.074	25.782	3.5E-11	1.748	2.074	Multiple R	0.490
Log(storage)	-0.109	0.059	-1.866	0.089	-0.238	0.020	R Square	0.240
}							Adj R Sq	0.171
							Std Error	0.216

Log(DisPin)		Log(Dis	sPout)	Log(%DisPout)	
Mean	-1.258	Mean	-1.428	Mean	1.829
Std Dev	0.355	Std Dev	0.392	Std Dev	0.237
Count	13	Count	13	Count	13

Page 4

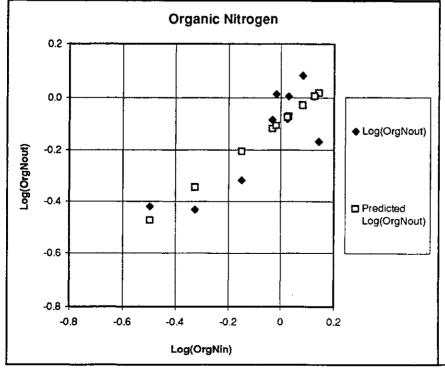

Total Phosphorus (TotP)

Arearatio is the best measure of pond size, followed by storage.

Depth is not a significant explanatory variable.

Coefficient of input conc not sig diff from 1 (i.e. % out may be independent of input).

TotP(mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression 5	Statistics
Intercept	-0.262	0.091	-2.870	7.5E-03	-0.449	-0.076	Multiple R	0.807
Log(depth)	-0.096	0.130	-0.738	0.466	-0.363	0.170	R Square	0.651
Log(TotPin)	0.940	0.126	7.459	0.000	0.683	1.198	Adj R Sq	0.628
							Std Error	0.209
TotP(mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression S	Statistics
Intercept	-0.176	0.093	-1.885	0.069	-0.367	0.015	Multiple R	0.836
Log(storage)	-0.092	0.040	-2.318	0.027	-0.173	-0.011	R Square	0.699
Log(TotPin)	0.918	0.118	7.814	1.0E-08	0.678	1.158	Adj R Sq	0.679
<u> </u>							Std Error	0.195
TotP (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression S	Statistics
Intercept	-0.538	0.130	-4.120	2.7E-04	-0.804	-0.271	Multiple R	0.845
Log(arearatio)	-0.132	0.049	-2.687	0.012	-0.232	-0.032	R Square	0.714
Log(TotPin)	0.908	0.115	7.904	8.0E-09	0.673	1.142	Adj R Sq	0.695
See graph below	N						Std Error	0.190
TotP (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression S	Statistics
Intercept	1.463	0.131	11.179	3.2E-12	1.196	1.731	Multiple R	0.445
Log(arearatio)	-0.132	0.049	-2.673	0.012	-0.232	-0.031	R Square	0.198
Log(TotPin)	-0.092	0.115	-0.802	0.429	-0.328	0.143	Adj R Sq	0.145
							Std Error	0.190
TotP (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression S	tatistics
Intercept	1.532	0.098	15.633	3.0E-16	1.332	1.732	Multiple R	0.426
Log(arearatio)	-0.128	0.049	-2.619	0.014	-0.227	-0.028	R Square	0.181
							Adj R Sq	0.155
							Std Error	0.189


Organic Nitrogen (OrgN)

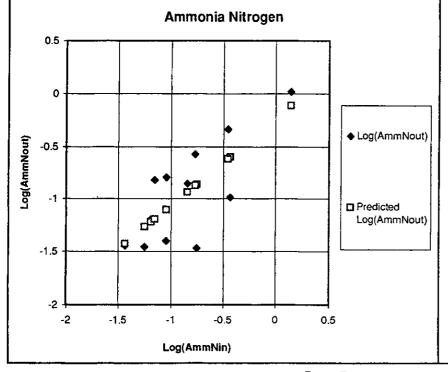
None of the measures of pond size even approach significance at the 5% level. Sample size is very small, and range is narrow.

Coeff of input conc not sig diff from 1 (i.e. % out may be independent of input)

OrgN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.078	0.038	-2.084	0.076	-0.167	0.011	Multiple R	0.868
Log(depth)	0.108	0.103	1.046	0.330	-0.136	0.352	R Square	0.754
Log(OrgNin)	0.832	0.181	4.604	2.5E-03	0.405	1.259	Adj R Sq	0.683
							Std Error	0.106
OrgN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.082	0.047	-1.764	0.121	-0.192	0.028	Multiple R	0.849
Log(storage)	-0.011	0.029	-0.375	0.719	-0.079	0.058	R Square	0.721
Log(OrgNin)	0.747	0.192	3.885	6.0E-03	0.292	1.201	Adj R Sq	0.641
							Std Error	0.113
OrgN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.148	0.076	-1.946	0.093	-0.327	0.032	Multiple R	0.861
Log(arearatio)	-0.029	0.035	-0.826	0.436	-0.112	0.054	R Square	0.741
Log(OrgNin)	0.724	0.184	3.937	5.6E-03	0.289	1.159	Adj R Sq	0.666
							Std Error	0.109
OrgN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.092	0.035	-2.624	0.030	-0.174	-0.011	Multiple R	0.846
Log(OrgNin)	0.770	0.172	4.483	2.0E-03	0.374	1.166	R Square	0.715
See graph belo	w						Adj R Sq	0.680
							Std Error	0.106
OrgN (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.897	0.075	25.418	6.1E-09	1.725	2.069	Multiple R	0.130
Log(arearatio)	-0.013	0.036	-0.370	0.721	-0.096	0.069	R Square	0.017
							Adj R Sq	-0.106
							Std Error	0.116
Log(OraNin)		Loa(Oral	Vout)	Log(%C	(DraNout)			

L	.og(OrgNin)	Log(Or	gNout)	Log(%OrgNout)	
Mean	-0.061	Mean	-0.140	Mean	1.921
Std Dev	0.206	Std Dev	0.188	Std Dev	0.111
Count	10	Count	10	Count	10

Page 6

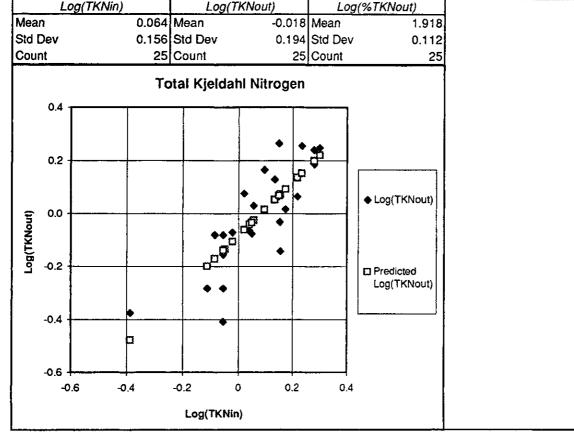

Ammonia Nitrogen (AmmN)

None of the measures of pond size even approach significance at the 5% level. Sample size is very small, and range is narrow.

Coeff of input conc not sig diff from 1 (i.e. % out may be independent of input).

				_				
AmmN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.233	0.226	-1.032	0.329	-0.745	0.278	Multiple R	0.761
Log(depth)	0.014	0.318	0.045	0.965	-0.705		R Square	0.579
Log(AmmNin)	0.832	0.244	3.412	7.7E-03	0.280	1.383	Adj R Sq	0.486
							Std Error	0.344
AmmN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.177	0.267	-0.665	0.523	-0.780	0.426	Multiple R	0.765
Log(storage)	-0.032	0.085	-0.379	0.713	-0.225	0.161	R Square	0.586
Log(AmmNin)	0.856	0.242	3.535	6.4E-03	0.308	1.405	Adj R Sq	0.494
							Std Error	0.342
AmmN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.306	0.266	-1.148	0.281	-0.908	0.297	Multiple R	0.768
Log(arearatio)	-0.054	0.107	-0.498	0.630	-0.296	0.189	R Square	0.591
Log(AmmNin)	0.861	0.240	3.588	5.9E-03	0.318	1.404	Adj R Sq	0.500
							Std Error	0.340
AmmN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.232	0.214	-1.088	0.302	-0.708	0.243	Multiple R	0.761
Log(AmmNin)	0.834	0.225	3.710	4.0E-03	0.333	1.335	R Square	0.579
See graph belo	w						Adj R Sq	0.537
							Std Error	0.327
AmmN (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.784	0.206	8.671	5.8E-06	1.326	2.242	Multiple R	0.208
Log(arearatio)	-0.068	0.101	-0.672	0.517	-0.294	0.158	R Square	0.043
							Adj R Sq	-0.052
							Std Error	0.330
Log(AmmNin)		Log/Amn	Nout)	Log/9/ Ar	mmMout)			

Log(,	AmmNin)	Log(Am	mNout)	Log(%AmmNout)		
Mean	-0.852	Mean	-0.943	Mean	1.907	
Std Dev	0.438	Std Dev	0.480	Std Dev	0.321	
Count	12	Count	12	Count	12	


Total Kjeldahl Nitrogen (TKN)

None of the measures of pond size are statistically significant at the 5% level.

Coeff of input conc not sig diff from 1 (i.e. % out may be independent of input).

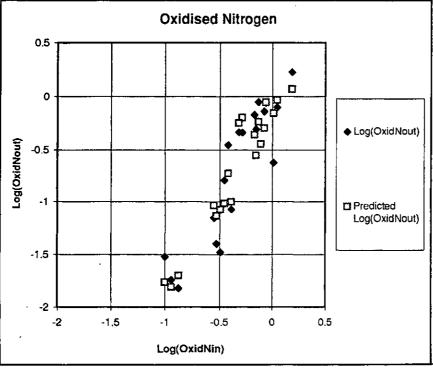
One outlier (Maitland) has been removed.

TKN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.087	0.025	-3.539	1.8E-03	-0.139	-0.036	Multiple R	0.831
Log(depth)	0.097	0.083	1.167	0.256	-0.075	0.269	R Square	0.691
Log(TKNin)	1.037	0.148	6.994	5.1E-07	0.730	1.345	Adj R Sq	0.662
							Std Error	0.113
TKN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.078	0.040	-1.941	0.065	-0.162	0.005	Multiple R	0.820
Log(storage)	-0.004	0.025	-0.170	0.866	-0.056	0.047	R Square	0.672
Log(TKNin)	1.015	0.154	6.603	1.2E-06	0.696	1.334	Adj R Sq	0.642
							Std Error	0.116
TKN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.119	0.061	-1.952	0.064	-0.246	0.007	Multiple R	0.823
Log(arearatio)	-0.020	0.031	-0.640	0.529	-0.085	0.045	R Square	0.677
Log(TKNin)	1.004	0.153	6.582	1.3E-06	0.688	1.320	Adj R Sq	0.648
							Std Error	0,115
TKN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.084	0.025	-3.385	2.5E-03	-0.135	-0.032	Multiple R	0.819
Log(TKNin)	1.019	0.149	6.856	5.4E-07	0.712	1.327	R Square	0.671
See graph belo	w						Adj R Sq	0.657
							Std Error	0.114
TKN (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.880	0.060	31.447	2.1E-20	1.756	2.004	Multiple R	0.140
Log(arearatio)	-0.021	0.030	-0.680	0.503	-0.083	0.042	R Square	0.020
							Adj R Sq	-0.023
							Std Error	0.113
Log/TK	(Nin)	Log/TKN	Vout)	1.00/%7	(KNout)			

Page 8

Oxidised Nitrogen (OxidN)

Arearatio is the best measure of pond size, followed by storage.


Depth is not a significant explanatory variable.

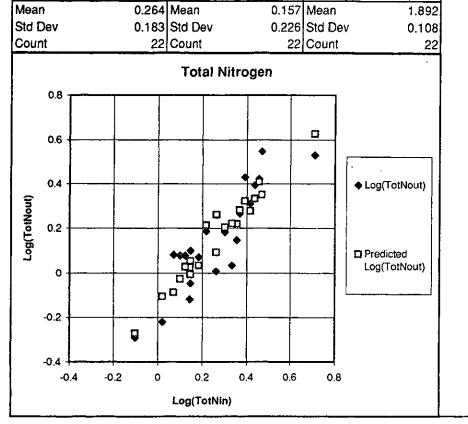
Coefficient of input concentration is significantly greater than 1.

One outlier (Lake Ellyn) has been removed.

OxidN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.098	0.090	-1.096	0.288	-0.288	0.091	Multiple R	0.911
Log(depth)	-0.306	0.212	-1.441	0.168	-0.754	0.142	R Square	0.830
Log(OxidNin)	1.753	0.193	9.072	6.3E-08	1.345	2.160	Adj R Sq	0.810
							Std Error	0.277
OxidN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	0.053	0.094	0.569	0.577	-0.144	0.251	Multiple R	0.935
Log(storage)	-0.155	0.052	-2.967	8.6E-03	-0.264	-0.045	R Square	0.875
Log(OxidNin)	1.668	0.168	9.957	1.6E-08	1.315	2.021	Adj R Sq	0.860
							Std Error	0.238
OxidN (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.534	0.148	-3.615	2.1E-03	-0.846	-0.222	Multiple R	0.941
Log(arearatio)	-0.215	0.064	-3.352	3.8E-03	-0.350	-0.080	R Square	0.885
Log(OxidNin)	1.630	0.162	10.077	1.4E-08	1.289	1.971	Adj R Sq	0.872
See graph belo	w						Std Error	0.228
OxidN (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	1.465	0.150	9.750	2.2E-08	1.148	1.782	Multiple R	0.807
Log(arearatio)	-0.215	0.065	-3.297	4.3E-03	-0.352	-0.077	R Square	0.651
Log(OxidNin)	0.630	0.164	3.830	1.3E-03	0.283	0.977	Adj R Sq	0.610
							Std Error	0.232

Log(OxidNin)		Log(Ox	idNout)	Log(%OxidNout)		
Mean	-0.336	Mean	-0.688	Mean	1.646	
Std Dev	0.330	Std Dev	0.637	Std Dev	0.371	
Count	20	Count	20	Count	20	

Page 9


Total Nitrogen (TotN)

None of the measures of pond size are statistically significant at the 5% level.

Arearatio is the best measure of pond size (although not significant), followed by storage.

Coeff of input conc not sig diff from 1 (i.e. % out may be independent of input).

Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
-0.134	0.042	-3.218	4.5E-03	-0.222	-0.047	Multiple R	0.888
0.071	0.080	0.891	0.384	-0.096	0.237	R Square	0.788
1.099	0.131	8.399	8.1E-08	0.825	1.373	Adj R Sq	0.766
						Std Error	0.109
Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
-0.096	0.050	-1.904	0.072	-0.202	0.010	Multiple R	0.891
-0.028	0.024	-1.198	0.246	-0.078	0.021	R Square	0.795
1.079	0.129	8.380	8.4E-08	0.810	1.349	Adj R Sq	0.773
						Std Error	0.107
Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
-0.231	0.064	-3.614	1.8E-03	-0.364	-0.097	Multiple R	0.903
-0.055	0.028	-1.957	0.065	-0.114	0.004	R Square	0.816
1.075	0.122	8.830	3.8E-08	0.820	1,330	Adj R Sq	0.797
N				•		Std Error	0.102
Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
-0.131	0.041	-3.175	4.8E-03	-0.218	-0.045	Multiple R	0.883
1.091	0.130	8.400	5.4E-08	0.820	1.362	R Square	0.779
						Adj R Sq	0.768
			_			Std Error	0.109
Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
1.785	0.056	31.811	1.3E-18	1.668	1.902	Multiple R	0.419
-0.057	0.028	-2.065	0.052	-0.115	0.001	R Square	0.176
						Adj R Sq	0.135
						Std Error	0.100
Nin)	Log(Toti	Nout)	Log(%1	otNout)			
	-0.134 0.071 1.099 Coefficient -0.096 -0.028 1.079 Coefficient -0.231 -0.055 1.075 V Coefficient -0.131 1.091 Coefficient 1.785 -0.057	-0.134 0.042 0.071 0.080 1.099 0.131 Coefficient Std Error	-0.134	-0.134	-0.134	-0.134	-0.134

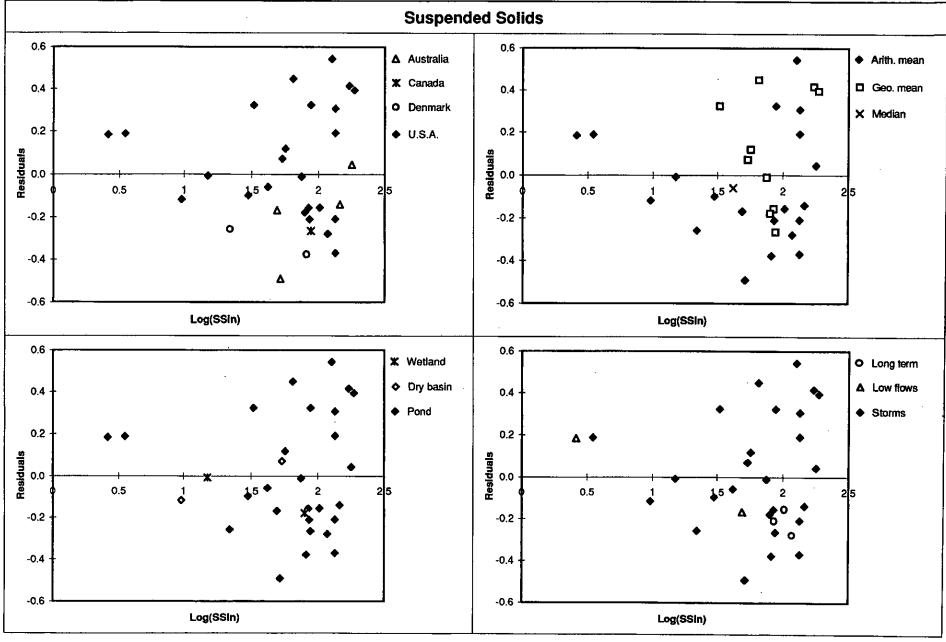
Page 10

Chemical Oxygen Demand (COD)

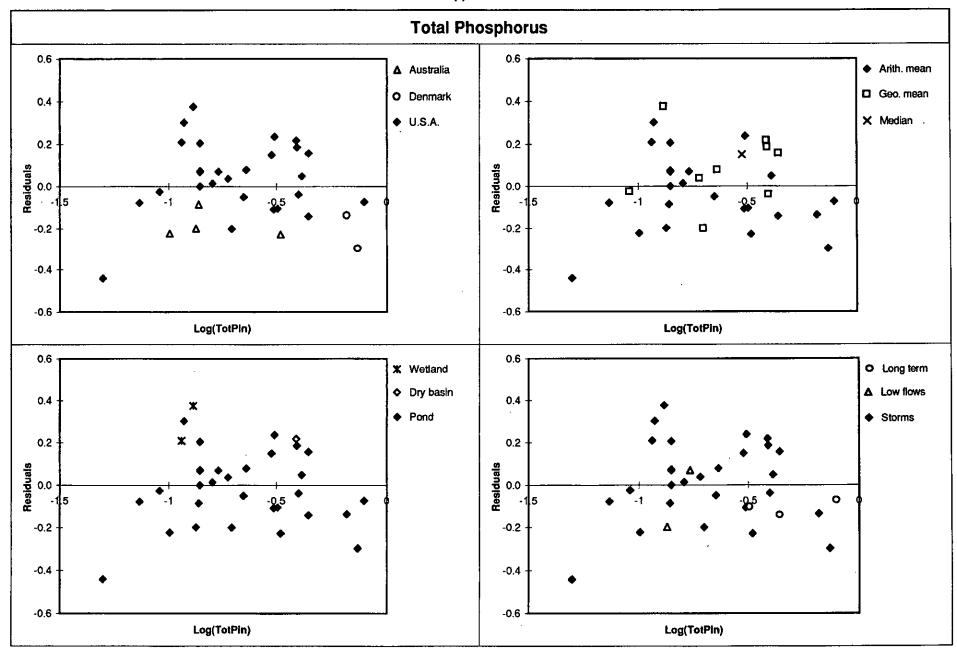
All of the measures of pond size are statistically significant at the 5% level. Storage is the best measure, followed by depth, then arearatio.

Coeff of input conc not sig diff from 1 (i.e. % out may be independent of input).

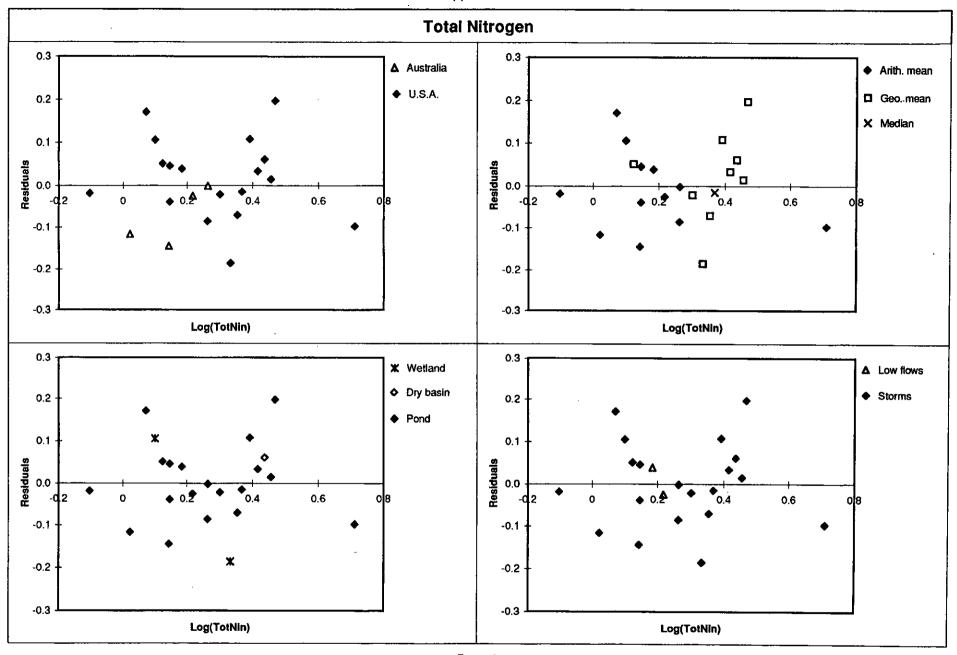
							•	
COD (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.188	0.352	-0.536	0.603	-0.963	0.586	Multiple R	0.870
Log(depth)	-0.597	0.199	-3.004	0.012	-1.034		R Square	0.757
Log(CODin)	1.052	0.212	4.972	4.2E-04	0.586		Adj R Sq	0.713
							Std Error	0.135
COD (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.036	0.354	-0.102	0.921	-0.816	0.744	Multiple R	0.872
Log(storage)	-0.180	0.059	-3.042	0.011	-0.310	-0.050	R Square	0.760
Log(CODin)	1.079	0.210	5.126	3.3E-04	0.615	1.542	Adj R Sq	0.716
See graph belo	W					İ	Std Error	0.134
COD (mg/L)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	-0.631	0.415	-1.522	0.156	-1.543	0.281	Multiple R	0.848
Log(arearatio)	-0.204	0.081	-2.507	0.029	-0.382	-0.025	R Square	0.719
Log(CODin)	1.085	0.228	4.759	5.9E-04	0.583	1.586	Adj R Sq	0.668
							Std Error	0.145
COD (%)	Coefficient	Std Error	t Stat	P-value	Lower 95%	Upper 95%	Regression	Statistics
Intercept	2.095	0.072	29.125	1.7E-12	1.938	2.252	Multiple R	0.674
Log(storage)	-0.182	0.058	-3.164	8.2E-03	-0.308	-0.057	R Square	0.455
							Adj R Sq	0.409
							Std Error	0.131


Log(CODin)		Log(CC	Dout)	Log(%CODout)		
Mean	1.654	Mean	1.551	Mean	1.896	
Std Dev	0.177	Std Dev	0.252	Std Dev	0.170	
Count	14	Count	14	Count	14	

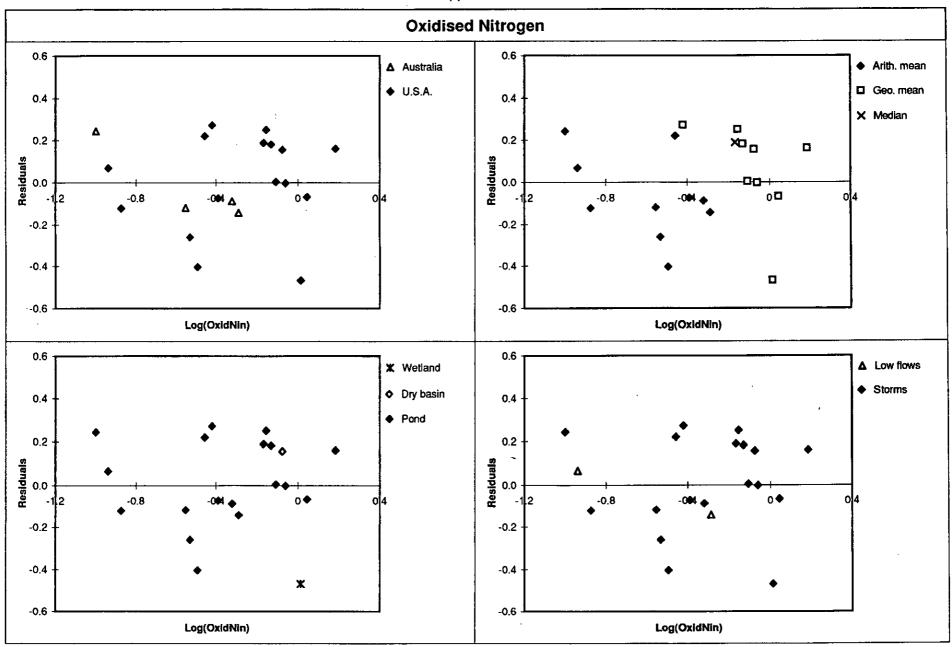
Page 11


APPENDIX D

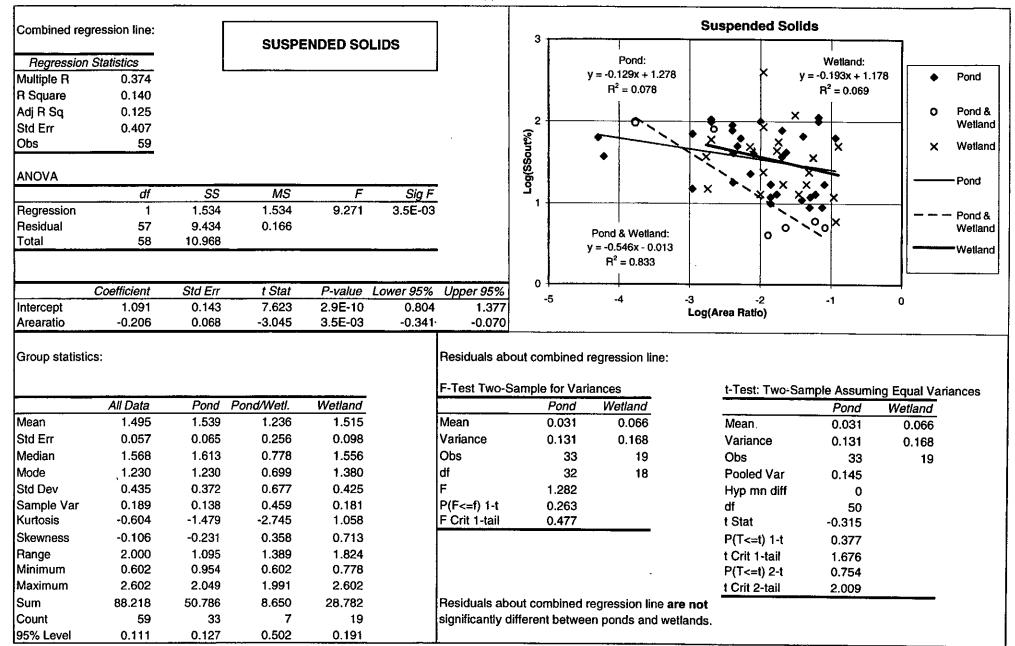
Descriptive Factors



Page 1


Appendix D

Page 2


Page 3

Page 4

APPENDIX E

Ponds vs Wetlands

Combined re	gression line:	Γ]	_			Total Lead	ı		
			то	TAL LEAD)		3						
Regression				·		j	1				Wetland:	I —	
Multiple R	0.611										y = -0.418x + 0.5	590	Pond
R Square	0.373									, i	$R^2 = 0.516$		
Adj R Sq	0.352											<u></u> По	Pond 8
Std Err	0.323						<u> </u>			× •	•		Wetlar
Obs	31						<u>ğ</u>			X.	×	[]	1104.00
ANOVA							Log(TotPbout%)	`) XXX	•	×	Wetlar
ANOVA	df	SS	MS	F	Sig F		Log		1	×			
Regression	1	1.805	1.805	17.275	2.6E-04		1			•	• 1.		— Pond
Residual	29	3.030	0.104						Pond:		×		
Total	30	4.835				_		y =	-0.301x + 0.758	1	•	_	-Wetlai
						-			$R^2 = 0.290$	•			
<u></u>	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper.95%	0 -5		-4 -3	-2	-1		
Intercept	0.687	0.182	3.780	7.2E-04	0.315		-5			.og(Area Ratio)	-1	Ū	
Arearatio	-0.351	0.084	-4.156	2.6E-04	-0.523	-0.178							
Group statist	tics:					Residuals ab	out comb	ined red	ression line:				
								_			At. A		•
						F-Test Two-S				t-Test: Two	-Sample Assumir		iances
	All Data	Pond	Wetland						Wetland		Pond	Wetland	
Mean	1.403	1.382	1.427		•	Mean	-0.0		0.038	Mean	-0.032	0.038	•
Std Err	0.072	0.096	0.113			Variance	0.	127	0.064	Variance	0.127	0.064	
Median	1.491	1.342	1.498			Obs		19	10	Obs	19	10	
Mode	1.041	1.041	#N/A			df		18	9	Pooled Var			
Std Dev	0.401	0.421	0.358			F		98		Hyp mn diff			
Sample Var	0.161	0.177	0.128			P(F<=f) 1-t		45		df t Stat	27		
Kurtosis	-0.772	-0.607	-0.689			F Crit 1-tail	2.8	960			-0.553		
Skewness	-0.292	-0.307	-0.490 1.085							P(T<=t) 1-t	0.293		
Range Minimum	1.556 0.477	1.556 0.477	0.778							t Crit 1-tail P(T<=t) 2-t	1.703 0.585		
Maximum	2.033	2.033	1.863			}				t Crit 2-tail	0.565 2.052		
						Desiduals -t-			unnainn linn +-+ -		2.052		
Sum	43.506	26.260	14.273						ression line are n		•		
Count 95% Level	31	19	10 0.222			significantly of	anterent b	etween	ponds and wetlan	us.			
DEO/ Louisi	0.141	0.189	വ മാവ			4							

Combined re	gression line:	Γ]	3 —	·	Total Zinc		
Regression	Statistics		IC	TAL ZINC	;		Ĭ				
Multiple R	0.508				<u> </u>	J				Wetland: y = -0.204x +	11
R Square	0.258									$R^2 = 0.32$	
Adj R Sq	0.230					1	l	• • ×		11 5.02	
Std Err	0.375						ુ≎ ├─	**************************************	—		
Obs	29						<u>\$</u>	×	×××		× Wetlan
						1	<u> </u>	•	· · ·	_	A Weilar
ANOVA						İ	Log(TotZnout%)			×	
	df	SS	MS	F	Sig F		ğ			^	Pond
Regression	1	1.318	1.318	9.379	4.9E-03		' T		•		
Residual	27	3.793	0.140					Pond:			
Total	28	5.111						y = -0.545x + 0.559			Wetlan
						·		$R^2 = 0.315$	•		Wedan
	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper 95%	ه لـــــ				
ntercept	0.870	0.259	3.356	2.4E-03	0.338		-3			1	0
Arearatio	-0.407	0.133	-3.062	4.9E-03	-0.679				Log(Area Ratio)		
						i					
Group statisti	ics:					Residuals abo	ut combin	ed regression line	9 :		
						F-Test Two-Sa	ample for	Variances	t-Test: Two-	Sample Assumi	ng Equal Variances
	All Data	Pond	Wetland				Pon	d Wetland		Pond	Wetland
Mean	1.634	1.588	1.757			Mean	-0.05	0.132	Mean	-0.050	0.132
Std Err	0.079	0.104	0.085			Variance	0.16	0.057	Variance	0.160	0.057
Median	1.763	1.756	1.767			Obs	2	1 8	Obs	21	8
Mode	1.763	1.756	1.763			df	2	90 7	Pooled Var	0.133	-
Std Dev	0.427	0.477	0.239			F	2.81	8	Hyp mn diff	0	
Sample Var	0.183	0.227	0.057			P(F<=f) 1-t	0.08	2	df	27	
Kurtosis	2.304	1.259	3.385			F Crit 1-tail	3.44		t Stat	-1.198	
Skewness	-1.524	-1.297	-1.112						P(T<=t) 1-t	0.121	
Range	1.839	1.839	0.855						t Crit 1-tail	1.703	
iungo	0.301	0.301	1.255						P(T<=t) 2-t	0.241	
•			2.111						t Crit 2-tail	2.052	
Minimum	2.140	2.140	2.111								
Minimum Maximum		2.140 33.340	14.054			Residuals abo	ut combin	ed regression line			
Minimum	2.140 47.394 29							ed regression line ween ponds and	are not		

Combined regr	ession line:	Ī	TOTA	L COPPER	}
Regression 3	Statistics				
Multiple R	0.401				
R Square	0.161				
Adj R Sq	0.101				
Std Err	0.401				
Obs	16				
ANOVA					
	df	SS	MS	F	Sig F
Regression	1	0.432	0.432	2.684	0.124
Residual	14	2.256	0.161		
Total	15	2.688			

3 -		Total Copp	er	
	**	×	Wetland: y = -0.399x + 1.105 R ² = 0.802	◆ Pond
Log(TotCuout%)	-	×		× Wettand
Log(Tc		••	×	Pond
	Pond: y = -0.080x + 1.382 $R^2 = 0.012$	•	:	Wetland
0 -	3 -	2 Log(Area Ratio)	-1 ()

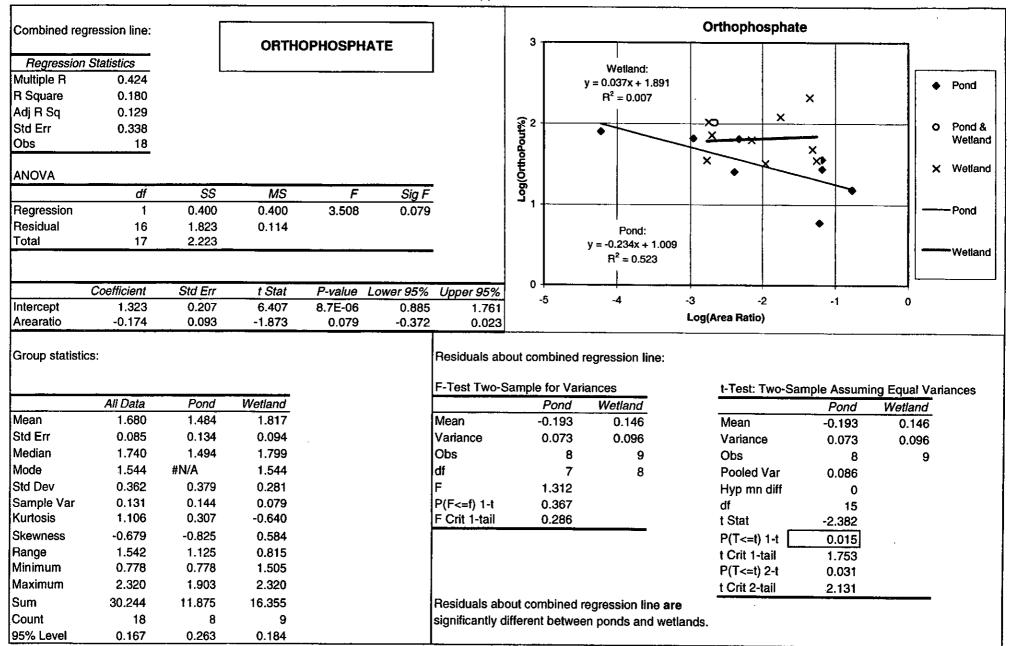
	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1.160	0.322	3.599	2.9E-03	0.469	1.852
Arearatio	-0.272	0.166	-1.638	0.124	-0.627	0.084

Group statistics:

All Data Pond

	All Data	Pond	Wetland
Mean	1.662	1.524	1.893
Std Err	0.106	0.135	0.133
Median	1.725	1.607	1.997
Mode	#N/A	#N/A	#N/A
Std Dev	0.423	0.428	0.325
Sample Var	0.179	0.183	0.106
Kurtosis	1.071	1.257	2.162
Skewness	-1.020	-1.025	-1.447
Range	1.602	1.435	0.903
Minimum	0.602	0.602	1.301
Maximum	2.204	2.037	2.204
Sum	26.597	15.240	11.357
Count	16	10	6
95% Level	0.207	0.265	0.260

Residuals about combined regression line:


F-Test Two-Sample for Variances

	Pond	Wetland
Mean	-0.117	0.196
Variance	0.193	0.030
Obs	10	6
df	9	5
F	6.547	
P(F<=f) 1-t F Crit 1-tail	0.026	
F Crit 1-tail	4.772	
Ī		

t-Test: Two-Sample Assuming Unequal Variances

	•	
	Pond	Wetland
Mean	-0.117	0.196
Variance	0.193	0.030
Obs	10	6
Hyp mn diff	0	
df	13	
t Stat	-2.010	
P(T<=t) 1-t	0.033	
t Crit 1-tail	1.771	
P(T<=t) 2-t	0.066	
t Crit 2-tail	2.160	

Residuals about combined regression line **are** significantly different between ponds and wetlands.

Page 5

						Apper	ndix E		
Combined re	egression line:		DISSOL V	ED PHOSE	PHORUS		3 -	<u> </u>	Diss
Regressio	n Statistics		5.000						1
Multiple R	0.470					•	<u> </u>		
R Square	0.221								
Adj R Sq	0.191						_	•	
Std Err	0.240						2	8	
Obs	28						orte		
ANOVA							Log(DisPout%)		
	df	SS	MS	F	Sig F	•	Log		
Regression	1	0.426	0.426	7.384	0.012		'		
Residual	26	1.500	0.058				1	Pond & Wetland:	1
Total	27	1.926						y = -0.124x + 1.473	7
								$R^2 = 0.306$	
	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper 95%	0 -5	-4	
Intercept	1.513	0.117	12.943	7.7E-13	1.273	1.754	-5	-4	-ა Log(
Arearatio	-0.145	0.053	-2.717	0.012	-0.254	-0.035		<u> </u>	
Group statist	tics:					Residuals ab	out combined	regression line:	
						F-Test Two-S	Sample for Va	riances .	
	All Data	Pond	Pond/Wetl.	Wetland		-	Pond	Wetland	
Mean	1.806	1.754	1.787	1.935		Mean	-0.044	0.170	
Std Err	0.050	0.081	0.101	0.043		Variance	0.066	0.014	
Median	1.875	1.663	1.866	1.898		Obs	15	7	•
Mode	1.875	1.643	#N/A	1.875		df	14	6	
Std Dev	0.267	0.315	0.246	0.114		F	4.579		
Sample Var	0.071	0.099	0.061	0.013		P(F<=f) 1-t	0.036		
Kurtosis	1.569	0.617	1.819	-0.382		F Crit 1-tail	3.956		

0.417

0.336

1.778

2.114

13.545

0.084

7

Skewness

Minimum

Maximum

95% Level

Range

Sum

Count

-1.220

1.114

1.000

2.114

50.572

0.099

28

-0.849

1.104

1.000

2.104

26.307

0.159

15

-1.446

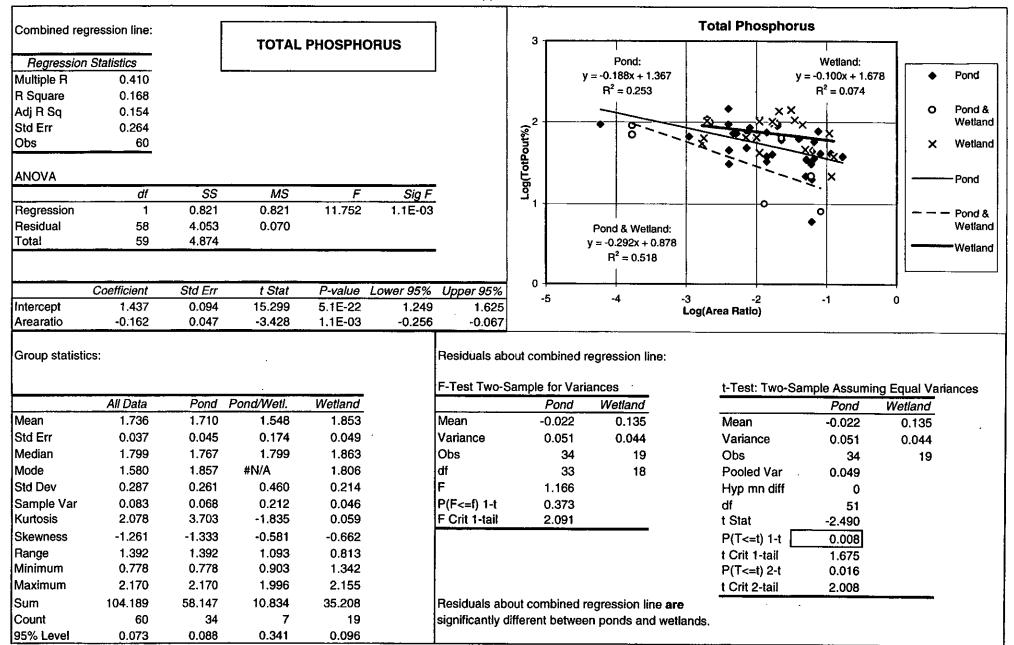
0.653

1.342

1.996

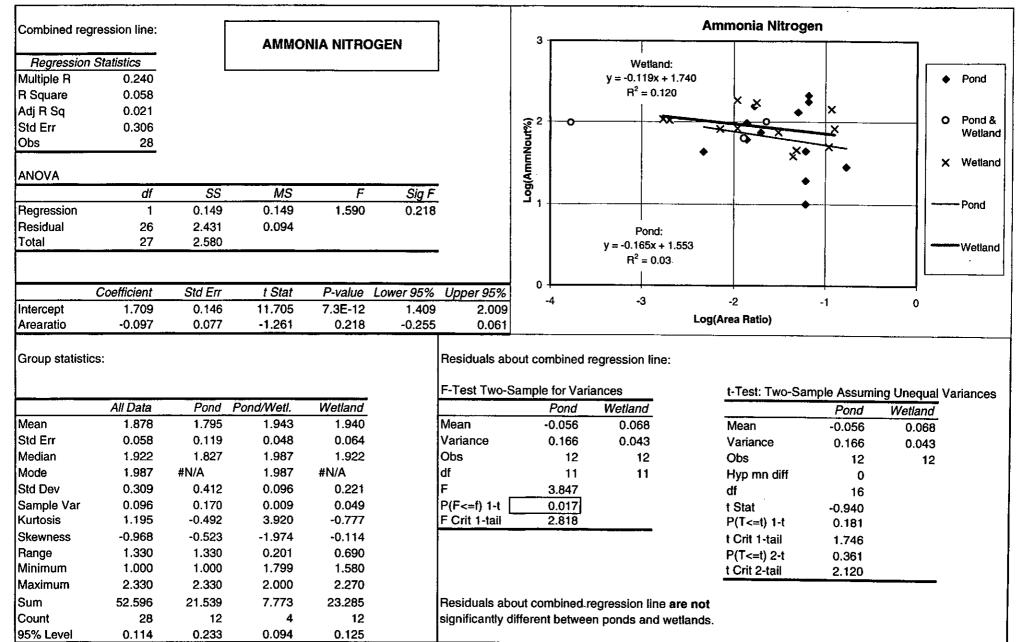
10.720

0.197


6

3 7	Dissolve	ed Phosphorus	
		Wetland: y = -0.057x + 1.837 R ² = 0.082	◆ Pond
2 -	0	×	O Pond & Wetland
Log(DisPout%)			× Wetland
og(Dis		0	Pond
_ 1 -		*	Pond &
	Pond & Wetland: y = -0.124x + 1.477 $R^2 = 0.306$	Pond: y = -0.226x + 1.309 R ² = 0.383	Wetland
0 -			
1	5 -4 -3 Log(Area	-2 -1 0 Ratio))

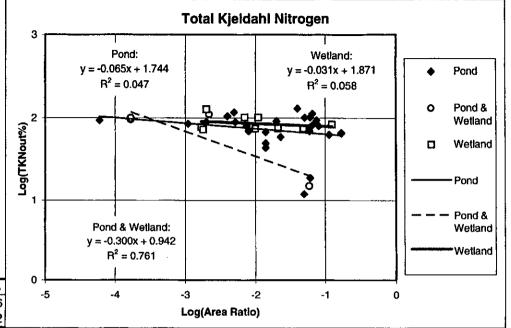
t-Test: Two-Sample Assuming Unequal Variances


	Pond	Wetland
Mean	-0.044	0.170
Variance	0.066	0.014
Obs	15	7
Hyp mn diff	0	
df	20	
t Stat	-2.670	
P(T<=t) 1-t	0.007	
t Crit 1-tail	1.725	
P(T<=t) 2-t	0.015	
t Crit 2-tail	2.086	

Residuals about combined regression line are significantly different between ponds and wetlands.

Combined reg	gression line:	ſ					3		Organic Nitr	ogen	
<u> </u>			ORGA	NIC NITRO	GEN		3	•		-	
Regression		L						Wetland:			
Multiple R	0.081					İ		y = 0.203x + 2.311			♦ Pond
R Square	0.007						ł	$R^2 = 0.751$			
Adj R Sq	-0.052									X	
Std Err	. 0.187					5	₹² 	•	X-X-X	• • • • • • • • • • • • • • • • • • • •	O Pond
Obs	19				-	1	<u> </u>				Wetla
						{	5		•	•	│ ★ Wetla
ANOVA						\$		1		•	A Trella
	df	SS	MS	F	Sig F	, -	2 0		·		
Regression	1	0.004	0.004	0.113	0.741	•	1				——Pond
Residual	17	0.594	0.035					}		Pond:	
Total	18	0.597]				y = -0.0018x + 1.849	Wetla
			>			•			ļ	$R^2 = 1E-05$	
							0				
	Coefficient	Std Err	t Stat		Lower 95%	Upper 95%	-4	-3	-2	-1	0
Intercept	1.885	0.100	18.901	7.5E-13	1.674		-		g(Area Ratio)		·
Arearatio	-0.018	0.053	-0.335	0.741	-0.130	0.095					,
Group statisti	cs:					Residuals about F-Test Two-San		•	t-Toet: Tw	n-Sample Assuming	
						r-rest iwo-san	·		1-1001. 711		Unequal Varianc
	All Data			Wetland			Pond	Wetland		Pond	Wetland
	<i>All Data</i> 1.915	1.852	1.926	2.014		Mean	Pond -0.058	Wetland 0.104	Mean		Wetland 0.104
							Pond	Wetland		Pond	Wetland
Std Err	1.915	1.852	1.926	2.014		Mean	Pond -0.058	Wetland 0.104	Mean	<i>Pond</i> -0.058	Wetland 0.104
Std Err Median	1.915 0.042	1.852 0.070	1.926 0.061	2.014 0.034		Mean Variance	-0.058 0.049	Wetland 0.104 0.008	Mean Variance	Pond -0.058 0.049 10	Wetland 0.104 0.008
Std Err Median Mode	1.915 0.042 1.949	1.852 0.070 1.892	1.926 0.061 1.973	2.014 0.034 1.993		Mean Variance Obs	Pond -0.058 0.049 10	Wetland 0.104 0.008 6	Mean Variance Obs	Pond -0.058 0.049 10	Wetland 0.104 0.008
Mean Std Err Median Mode Std Dev Sample Var	1.915 0.042 1.949 1.892	1.852 0.070 1.892 1.892	1.926 0.061 1.973 #N/A	2.014 0.034 1.993 #N/A		Mean Variance Obs df	Pond -0.058 0.049 10 9	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di	Pond -0.058 0.049 10 ff 0	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var	1.915 0.042 1.949 1.892 0.182	1.852 0.070 1.892 1.892 0.221	1.926 0.061 1.973 #N/A 0.105	2.014 0.034 1.993 #N/A 0.084		Mean Variance Obs df	Pond -0.058 0.049 10 9 6.168	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat	Pond -0.058 0.049 10 ff 0 13 -2.052	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis	1.915 0.042 1.949 1.892 0.182 0.033 6.919	1.852 0.070 1.892 1.892 0.221 0.049	1.926 0.061 1.973 #N/A 0.105 0.011	2.014 0.034 1.993 #N/A 0.084 0.007		Mean Variance Obs df F P(F<=f) 1-t	Pond -0.058 0.049 10 9 6.168 0.030	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1-	Pond -0.058 0.049 10 ff 0 13 -2.052 t 0.030	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis Skewness	1.915 0.042 1.949 1.892 0.182 0.033 6.919	1.852 0.070 1.892 1.892 0.221 0.049 4.437 -1.937	1.926 0.061 1.973 #N/A 0.105 0.011 #DIV/0! -1.605	2.014 0.034 1.993 #N/A 0.084 0.007 -1.525 0.558		Mean Variance Obs df F P(F<=f) 1-t	Pond -0.058 0.049 10 9 6.168 0.030	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1- t Crit 1-tail	Pond -0.058 0.049 10 ff 0 13 -2.052 1 0.030 1.771	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis	1.915 0.042 1.949 1.892 0.182 0.033 6.919 -2.261 0.833	1.852 0.070 1.892 1.892 0.221 0.049 4.437 -1.937 0.775	1.926 0.061 1.973 #N/A 0.105 0.011 #DIV/0! -1.605 0.194	2.014 0.034 1.993 #N/A 0.084 0.007 -1.525		Mean Variance Obs df F P(F<=f) 1-t	Pond -0.058 0.049 10 9 6.168 0.030	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1- t Crit 1-tail P(T<=t) 2-	Pond -0.058 0.049 10 ff 0 13 -2.052 t 0.030 1.771 t 0.061	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis Skewness Range Minimum	1.915 0.042 1.949 1.892 0.182 0.033 6.919 -2.261 0.833 1.301	1.852 0.070 1.892 1.892 0.221 0.049 4.437 -1.937 0.775 1.301	1.926 0.061 1.973 #N/A 0.105 0.011 #DIV/0! -1.605 0.194 1.806	2.014 0.034 1.993 #N/A 0.084 0.007 -1.525 0.558 0.209 1.924		Mean Variance Obs df F P(F<=f) 1-t	Pond -0.058 0.049 10 9 6.168 0.030	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1- t Crit 1-tail	Pond -0.058 0.049 10 ff 0 13 -2.052 t 0.030 1.771 t 0.061	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis Skewness Range Minimum Maximum	1.915 0.042 1.949 1.892 0.182 0.033 6.919 -2.261 0.833 1.301 2.134	1.852 0.070 1.892 1.892 0.221 0.049 4.437 -1.937 0.775 1.301 2.076	1.926 0.061 1.973 #N/A 0.105 0.011 #DIV/0! -1.605 0.194 1.806 2.000	2.014 0.034 1.993 #N/A 0.084 0.007 -1.525 0.558 0.209 1.924 2.134		Mean Variance Obs df F P(F<=f) 1-t F Crit 1-tail	Pond -0.058 0.049 10 9 6.168 0.030 4.772	Wetland 0.104 0.008 6 5	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1- t Crit 1-tail P(T<=t) 2-	Pond -0.058 0.049 10 ff 0 13 -2.052 t 0.030 1.771 t 0.061	Wetland 0.104 0.008
Std Err Median Mode Std Dev Sample Var Kurtosis Skewness Range Minimum	1.915 0.042 1.949 1.892 0.182 0.033 6.919 -2.261 0.833 1.301	1.852 0.070 1.892 1.892 0.221 0.049 4.437 -1.937 0.775 1.301	1.926 0.061 1.973 #N/A 0.105 0.011 #DIV/0! -1.605 0.194 1.806	2.014 0.034 1.993 #N/A 0.084 0.007 -1.525 0.558 0.209 1.924		Mean Variance Obs df F P(F<=f) 1-t F Crit 1-tail	Pond -0.058 0.049 10 9 6.168 0.030 4.772	Wetland 0.104 0.008 6	Mean Variance Obs Hyp mn di df t Stat P(T<=t) 1- t Crit 1-tail P(T<=t) 2-	Pond -0.058 0.049 10 ff 0 13 -2.052 t 0.030 1.771 t 0.061	Wetland 0.104 0.008

Page 8


Combined regr	ession line:
Regression	Statistics
Multiple R	0.307
R Square	0.094
Adj R Sq	0.070
Std Err	0.216
Obs	40

TOTAL KJELDAHL NITROGEN

ANOVA

	df	SS	MS	F	Sig F
Regression	1	0.184	0.184	3.940	0.054
Residual	38	1.770	0.047		
Total	39	1 954			

	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1.710	0.087	19.675	1.6E-21	1.534	1.886
Arearatio	-0.083	0.042	-1.985	0.054	-0.167	0.002

Group statistics:

	All Data	Ponds	Pond/Wetl.	Wetland
Mean	1.869	1.857	1.798	1.934
Std Err	0.035	0.043	0.208	0.028
Median	1.911	1.908	1.987	1.892
Mode	2.004	1.908	#N/A	2.004
Std Dev	0.224	0.225	0.415	0.085
Sample Var	0.050	0.051	0.172	0.007
Kurtosis	5.762	5.906	3.920	0.393
Skewness	-2.351	-2.285	-1.975	1.156
Range	1.038	1.038	0.865	0.246
Minimum	1.079	1.079	1.176	1.857
Maximum	2.117	2.117	2.041	2.104
Sum	74.741	50.145	7.191	17.406
Count	40	27	4	9
95% Level	0.069	0.085	0.407	0.055

Residuals about combined regression line:

F-Test Two-Sample for Variances

	Pond	Wetland
Mean	0.0030	0.057
Variance	0.048	0.008
Obs	27	9
df	26	8
F_	6.112	
P(F<=f) 1-t	0.006	
F Crit 1-tail	3.102	

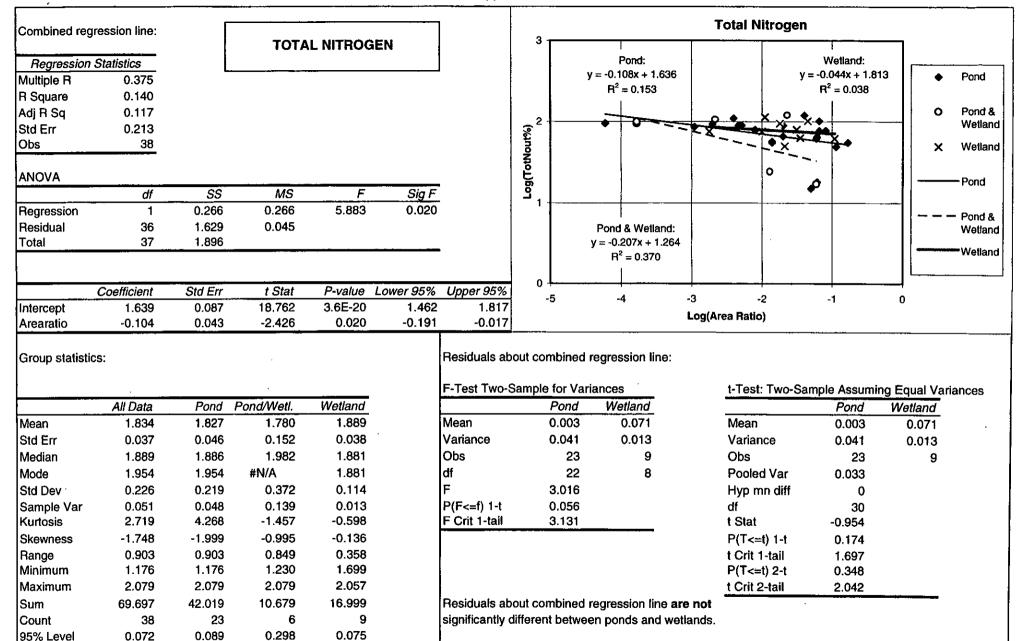
t-Test: Two-Sample Assuming Unequal Variances

	Pond	Wetland
Mean	0.0030	0.057
Variance	0.048	0.008
Obs	27	9
Hyp mn diff	0	
df	32	,
t Stat	-1.040	
P(T<=t) 1-t	0.153	
t Crit 1-tail	1.694	
P(T<=t) 2-t	0.306	
t Crit 2-tail	2.037	

Residuals about combined regression line are not significantly different between ponds and wetlands.

		-					TUIX E					
Combined re	egression line:		NITRA	TE NITRO	GEN		3 r		 	Nitrate Nitrog	jen	·
Regression	n Statistics		(41010)		WEN .						 Wetland:	
Multiple R	0.644	L				1			į		y = -0.155x + 1	.529
R Square	0.415								İ		$R^2 = 0.226$	
Adj R Sq	0.382							•				
Std Err	0.225						⊋ 2 ↑			XXXX		——————————————————————————————————————
Obs	20					j	ğ			* * * * * * * * * * * * * * * * * * *	×	O Pond & Wetland
	<u>.</u>						ge			0	-87	
ANOVA							Log(Nitrateout%)				×	X Wetland
	df	SS	MS	F	Sig F		8 1	<u> </u>				
Regression	1	0.644	0.644	12.745	2.2E-03		_		İ			Pond
Residual	18	0.909	0.051						Pond:			
Total	19	1.553				•			-0.228x + 1.193			Wetland
									$R^2 = 0.540$		İ]]
	Coefficient	Std Err	t Stat	P-value	Lower 95%	Upper 95%	₀┞					
Intercept	1.312	0.132	9.947	9.7E-09	1.035		-5		-4 -	3 -2	-1	0
Arearatio	-0.218	0.061	-3.570	2.2E-03	-0.347					Log(Area Ratio)		
Group statist	lics:					Residuals ab		_		t-Tast: Two	Sampla Assumi	ng Equal Variances
	All Data	Pond	Pond/Wetl.	Wetland					Vetland	t-rest. Two-	Pond	Wetland
Mean	1.747	1.642	1.668	1.844		Mean		101	0.089	Mean	-0.101	0.089
Std Err	0.064	0.144	0.148	0.063		Variance		067	0.032	Variance	0.067	0.032
Median	1.872	1.653	1.568	1.898		Obs		7	10	Obs	7	10
Mode	1.301	1.996	#N/A	#N/A		df		6	9	Pooled Var	0.046	10
Std Dev	0.286	0.382	0.256	0.199	i	F	2.	086	-	Hyp mn diff	0.040	
Sample Var	0.082	0.146	0.066	0.040		P(F<=f) 1-t		155		df	15	
Kurtosis	0.993	-0.484	#DIV/0!	7.836		F Crit 1-tail		374		t Stat	-1.792	
Skewness	-1.317	-0.788	1.489	-2.679			-			P(T<=t) 1-t	0.047	
Range	0.996	0.996	0.482	0.690						t Crit 1-tail	1.753	
Minimum	1.000	1.000	1.477	1.301						P(T<=t) 2-t	0.093	
Maximum	1.996	1.996	1.959	1.991						t Crit 2-tail	2.131	
Sum	34.944	11.497	5.004	18.443		Residuals ab	out comb	ined rear	ession line are		2.101	
	20	7	3	10								
Count	20	- 1	J	10		significantiv d	lifferent b	etween o	onds and wetlar	ids.		

Combined in	egression line:		OXIDIS	ED NITRO	OGEN
Regressio	on Statistics				
Multiple R	0.581				
R Square	0.337				
Adj R Sq	0.304				
Std Err	0.325				
Obs	22				
ANOVA					
ANOVA	df	SS	MS	F	Sig F
	df 1	<i>SS</i> 1.072	<i>MS</i> 1.072	<i>F</i> 10.180	Sig F 4.6E-03
ANOVA Regression Residual				·	
Regression	1	1.072	1.072	·	
Regression Residual	1 20	1.072 2.107	1.072	·	


3	Oxidised Nitrogen	
Log(OxidNout%)	Pond: y = -0.431x + 0.888 R ² = 0.344	◆ Pond O Pond & Wetland X Wetland Pond
	4 -3 -2 -1 (Log(Area Ratio))

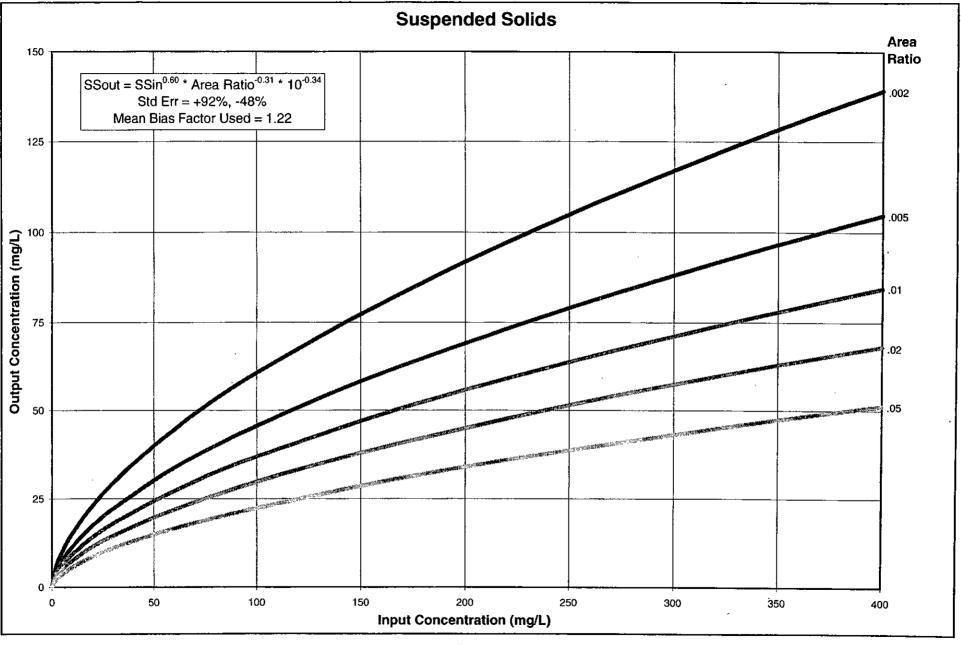
	Coeπicient	Sta Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1.101	0.170	6.470	2.6E-06	0.746	1.456
Arearatio	-0.278	0.087	-3.191	4.6E-03	-0.459	-0.096

Group statistics:

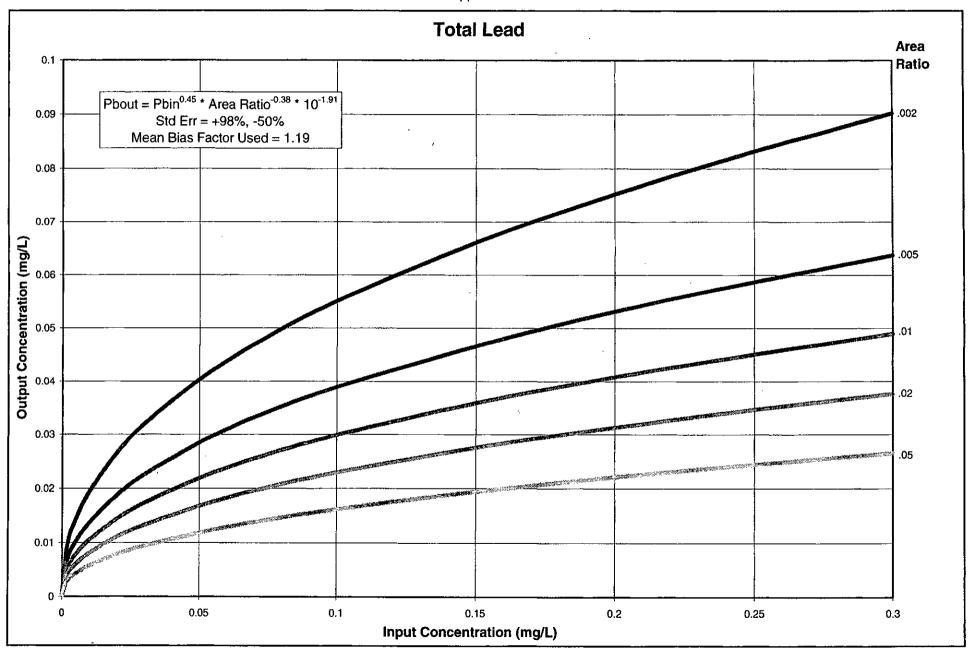
	All Data	Pond
Mean	1.597	1.570
Std Err	0.083	0.091
Median	1.663	1.663
Mode	1.204	1.204
Std Dev	0.389	0.397
Sample Var	0.151	0.157
Kurtosis	-1.577	-1.645
Skewness	-0.276	-0.172
Range	1.079	1.079
Minimum	1.000	1.000
Maximum	2.079	2.079
Sum	35.127	29.829
Count	22	19
95% Level	0.163	0.178

Insufficient data for comparative analysis.

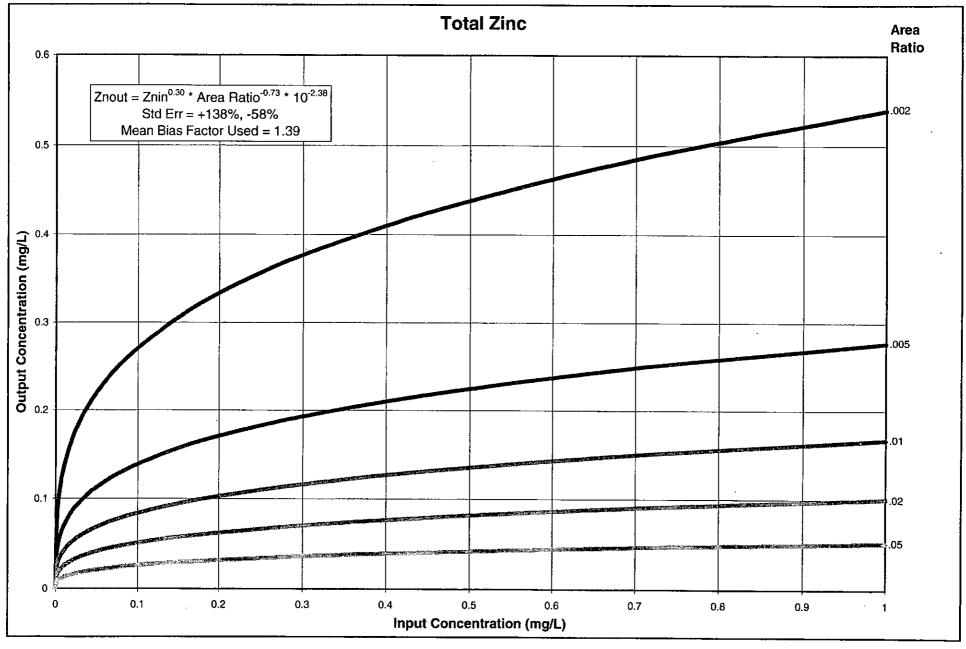
				·				
Combined re	gression line:	ſ	CHEM	ICAL OXY	GEN		3 -	Chemical Oxygen Demand
Regression	Statistics			DEMAND				
Multiple R	0.568		•					
R Square	0.322	-			, <u>-</u> .			
Adj R Sq	0.285							◆ Pond
Std Err	0.298						2 -	
Obs	20				•		(% Q	O Pond &
ANOVA							Log(COD%)	Wetland
AITOVA	df	SS	MS	F	Sig F	•	<u>.</u>	↑ × Wetland
Regression	1	0.760	0.760	8.568	9.0E-03	•	1 -	•
Residual	18	1.597	0.089					Pond:
Total	19	2.358						y = -0.338x + 1.184
						,		$R^2 = 0.389$
	0 "	2:15					0 -	,
lata-saat	Coefficient	Std Err	t Stat				-	-3 -2 -1 0
Intercept Arearatio	0.995 -0.417	0.276 0.142	3.608 -2.927	2.0E-03 9.0E-03	0.416 -0.716	1.575 -0.118		Log(Area Ratio)
Alealatio	-0.417	0.142	-2.921	9.0E-03	-0.716	-0.116		
Group statisti	cs:				:	Insufficient da	ata for	r comparative analysis.
	•							
	All Data	Pond	Wetland					
Mean	1.779	1.838	1.778				1	
Std Err	0.079	0.068	0.228		-			
Median	1.905	1.905	2.000					
Mode	1.982	1.982	#N/A		·			
Std Dev	0.352	0.273	0.395					
Sample Var	0.124	0.075	0.156					
Kurtosis	2.412	6.090	#DIV/0!					
Skewness	-1.555	-1.778	-1.730					
Range	1.467	1.312	0.691					
Minimum	0.845	1.000	1.322		ì			•
Maximum	2.312	2.312	2.013					
Sum	35.582	29.402	5.335					
Count	20	16	3					·
95% Level	0.154	0.134	0.447					

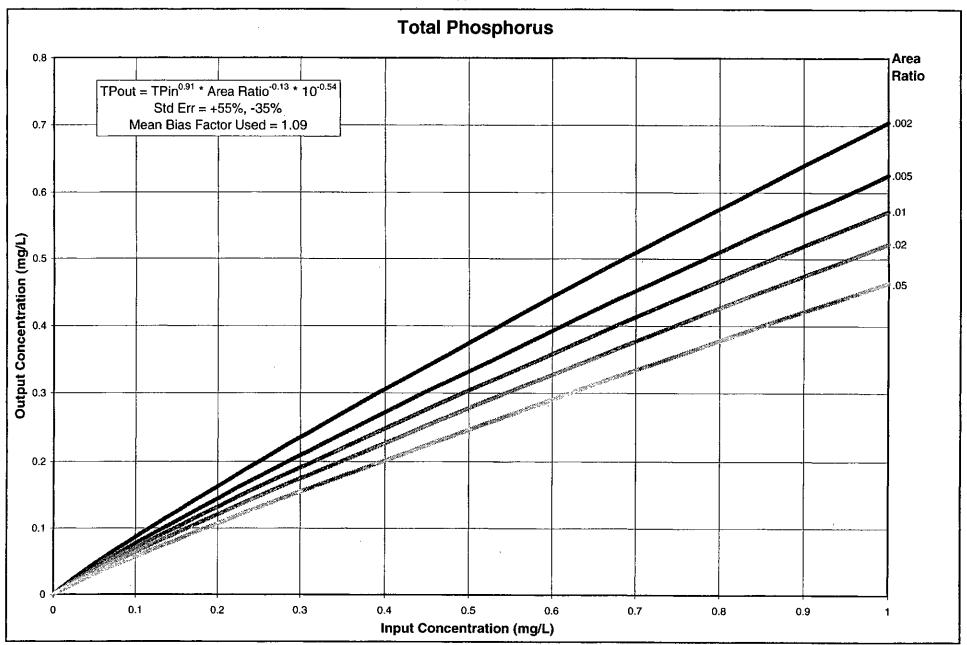

Page 14

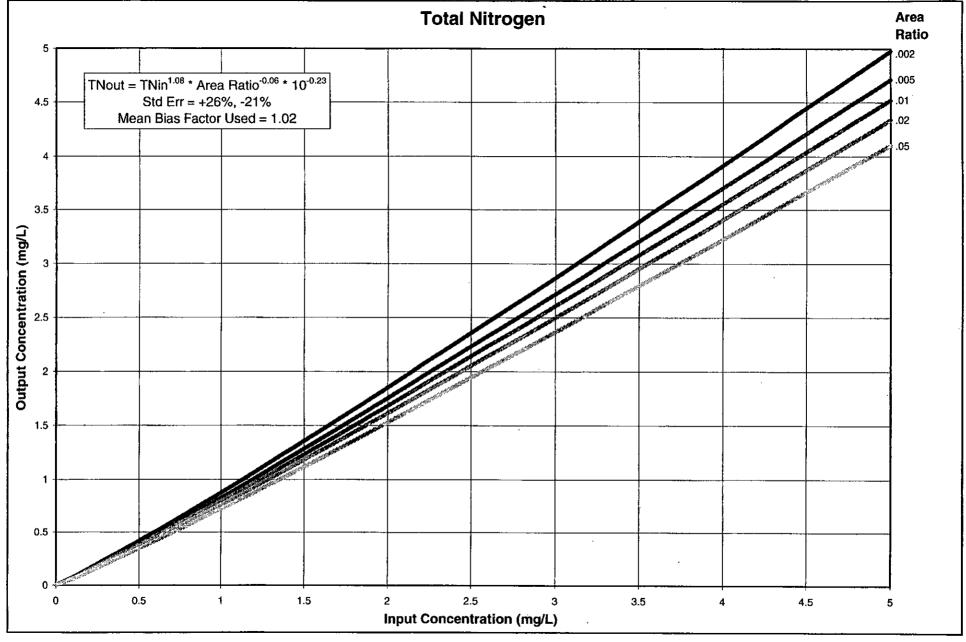
Combined reg	gression line:		BIOLOG	GICAL OX	YGEN		3 1		В	iological Oxygen I	Demand		
Regression	Statistics			DEMAND						Wet	land:	-	·
Multiple R	0.678	Į.									2x + 1.302	•	
R Square	0.459	_				•				$R^2 =$	0.461	11	Pond
Adj R Sq	0.421							× 8	<u> </u>	1			
Std Err	0.195						ક ² ં		7	×			
Obs	16						Ę (×		× Wetland
							Řĺ			• * *	-		
ANOVA							Log(BODout%)			×			
	df	SS	MS	F	Sig F		֡֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓]	^		[]-	Pond
Regression	1	0.453	0.453	11.886	3.9E-03		']						
Residual	14	0.534	0.038						Pon	d:]]	
Total	15	0.987							y = -0.292x	+ 1.318		-	Wetland
									$R^2 = 0.$	480		<u> </u>	
	Coefficient	Std Err	4 Cini	Dustin	1 050/	(I 0.50/	0 -				·····		
Intercept	1.307	0.178	<i>t Stat</i> 7.355	<i>P-value</i> 3.6E-06	Lower 95% 0.926		-3	3	-2	-1		Ö	
Arearatio	-0.308	0.176	-3.448	3.9E-03	-0.500					Log(Area Ratio)			
						1	•		,	-			
Group statisti	cs:					Residuals ab	out con	bined re	egression line:				
						F-Test Two-S	Sample	for Varia	inces	t-Test: Two-S	amole Assumi	ing Egyal V	ariancee
	All Data	Pond	Wetland					Pond	Wetland		Pond	Wetland	-
Mean	1.896	1.889	1.904			Mean	-(0.021	0.021	Mean	-0.021	0.021	_
Std Err	0.064	0.074	0.110			Variance	(0.023	0.052	Variance	0.023	0.052	
Median	1.934	1.897	2.011			Obs		8	8	Obs	8	8	
Mode	#N/A	#N/A	#N/A			df		7	7	Pooled Var	0.038	Ū	
Std Dev	0.257	0.210	0.311			F	2	2.276		Hyp mn diff	0		
Sample Var	0.066	0.044	0.097			P(F<=f) 1-t).150		df	14		
Kurtosis	0.558	-1.103	1.330			F Crit 1-tail	().264		t Stat	-0.427		
Skewness	-0.822	0.293	-1.295							P(T<=t) 1-t	0.338		
Range	0.941	0.587	0.917		;					t Crit 1-tail	1.761		
Minimum	1.279	1.633	1.279							P(T<=t) 2-t	0.676		
Maximum	2.220	2.220	2.196							t Crit 2-tail	2.145		
Sum	30.343	15.111	15.233			Residuals abo	out com	bined re	egression line are	not			
Count	16	8	8			significantly d	lifferent	betweer	n ponds and wetl	ands.			
95% Level	0.126	0.146	0.216										

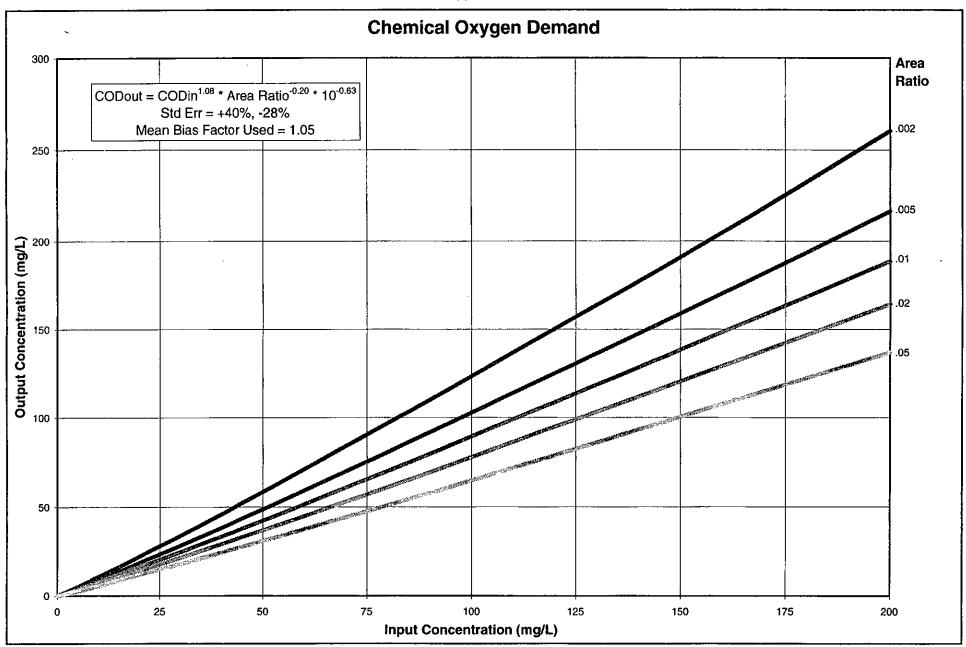

APPENDIX F

Performance Curves


Appendix F


Page 1


Page 2


Page 3

Page 4

Page 5

Page 6

The Cooperative Research Centre for Catchment Hydrology is a cooperative venture formed under the Commonwealth CRC Program between:

Bureau of Meteorology

CSIRO Division of Water Resources

Department of Natural Resources and Environment

Goulburn-Murray Water

Melbourne Water

Monash University

Murray-Darling Basin Commission

Southern Rural Water

The University of Melbourne

Wimmera-Mallee Water

Associates

CSIRO Division of Soils State Forests of NSW

CATCHMENT HYDROLOGY

Centre Office

Department of Civil Engineering, Monash University, Clayton, Victoria 3168, Australia. Telephone: (03) 9905 2704 Facsimile: (03) 9905 5033 International: +61 3 9905 2704 http://www-civil.eng.monash.edu.au/centres/crcch/