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PREFACE

CRC Project D3 "Probability and Risk of Extrerne Floods" was formulated to meet the needs of
Australian dam owners with respect to assessment of spillway adequacy. The analyses
associated with reservoir risk assessment involve the computation of a flood frequency curve
covering the range of events from "frequent" to "probable maximum"; the existing method
tended to be too conservative, due to the uncertainties of extreme event estimation.

- The research described in this report focusses on rainfall, since the standard method of
estimating extreme flood events uses design rainfall as input. To extend the frequency range of
site data, the project has made use of the regional information contained in the extensive daily
rainfall data available in Victoria. The result is a confident estimate of events of duration 12 to
72 hours down to an annual exceedence probability of 1 in 2000; the derived frequency curves
show consistency with corresponding probable maximum precipitations.

The work in this project has already been used in Victoria to provide more accurate estimates of
the risk of spillway overtopping. Plans are afoot to extend the work to provide similar design
data for the other states of Australia.

Dr Nanda Nandakumar and Erwin Weinmann (Project Leader), with input from several others,
have produced here research results which have important practical outcomes for the water
industry. I commend their report to you.

Russell Mein
Program Leader, Flood Hydrology
Cooperative Research Centre for Catchment Hydrology



ABSTRACT

This report describes research work undertaken as part of Project D3 on “Probability and Risk
of Extreme Floods” to develop and evaluate a methodology for estimating extreme design
rainfalls. The specific range of interest is design rainfalls of one to several days duration and
annual exceedance probabilities (AEPs) of 1 in 50 to 1 in 2000. The main field of application of
this research relates to the design and safety assessment of dam spillways.

The CRC-FORGE method resulting from this research is a further development of the Focussed
Rainfall Growth Estimation (FORGE) concept originating from the UK Institute of Hydrology
(IH) [Reed and Stewart, 1989]. Modifications to the IH-FORGE methodology were necesssary
to allow its application to the estimation of design rainfalls in the extreme range of AEPs.

The development and testing of the CRC-FORGE methodology was based on the analysis of
daily rainfall data from more than 1400 medium to long record rainfall stations in Victoria and
the bordering regions, made available by the Bureau of Meteorology.

The important questions of regional homogeneity of extreme rainfall, appropriate probability
distributions, and effects of inter-site dependence of rainfall data were addressed in detail, uéing
appropriate statistical tests and the results of rainfall data generation experiments. A method for
estimating confidence limits on the estimated rainfall frequency curve was also developed.

The report concludes that the CRC-FORGE method yields consistent extreme design rainfall
estimates to an AEP of 1 in 2000, and thus establishes an improved basis for the estimation of
design floods in the extreme range. The method has been applied to produce design rainfall
estimates for any site in Victoria for rainfall durations from 12 to 72 hours and for AEPs in the
range from 1 in 50 to 1 in 2000. The CRC-FORGE method is considered suitable for application
to extreme design rainfall estimation in other regions of Australia.
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1. INTRODUCTION

This report presents the evaluation and further development of the IH-FORGE (Institute of
Hydrology FOcussed Rainfall Growth Estimation) method by Reed and Stewart (1989), and
the application of the developed method (CRC-FORGE) to estimate extreme rainfalls for
Victoria. It summarises the research undertaken as part of Project D3 "Probability and Risk
of Extreme Floods" of the CRC for Catchment Hydrology. The aim was to allow estimation
of point design rainfalls up to an annual exceedance probability of 1 in 2000 for any location
in Victoria.

In recent years, regional rainfall frequency estimation methods have been favoured over
conventional methods based on single site data. In the regional methods, uncertainty in
rainfall quantile estimation is reduced by using information from several sites, The FORGE
concept involves pooling of data from regions of increasing size to estimate point rainfalls of
decreasing fréquency.

The next chapter provides the background of this study. The data used for the work are
described in Chapter 3. Chapter.4 covers important aspects of regional frequency estimation
in the context of the FORGE concept; Chapter 5, the distribution choice and homogeneity
issues of annual rainfall maxima for the Victorian region. In Chapter 6, the development of
spatial dependence models is given, leading to modifications to the IH-FORGE method
(Chapter 7) Chapter 8 deals with the estimation of uncertainty in the CRC-FORGE estimates.
Chapter 9 describes a method to derive the design values for ungauged sites. The final
chapter presents the summary and conclusions.



2. BACKGROUND: THE NEED FOR IMPROVED
ESTIMATES OF EXTREME RAINFALLS

The adoption of nonlinear flood estimation methods, and increased probable maximum
precipitation (PMP) estimates, have led to significantly higher values of probable maximum
floods (PMF) used in the design of spillways. As a consequence, dam owners in most states
of Australia are reviewing the spillway adequacy of their dams, and planning remedial action
if necessary. Some are considering design floods in the extreme range, but less than PMF.

The decision on the type and extent of rehabilitation needed for a particular dam can be based
on the risk of failure associated with the current spillway capacity compared to the level of
risk that the community considers acceptable. The Australian National Committee on Large
Dams (ANCOLD) Guidelines on Design Floods for Dams (ANCOLD, 1986} provide the
basis for classifying existing dams in Australia into an incremental flood hazard category
which determines the acceptable level of risk of failure of the dam from flooding. These
guidelines are currently undergoing a process of revision.

Risk assessment techniques require a continuous flood frequency curve up to the annual
exceedance probability (AEP) of the probable maximum flood (PMF). The flood frequency
curves can be obtained from rainfall frequency curves using a rainfall-runoff model.

Errors in frequency curve estimates have considerable economic and social implications. An
under-estimate of the design flood will lead to an under-designed spillway which has the
potential to result in increased flood damage costs and social hardship. On the other hand, an
overestimate will lead to extra costs, possibly up to tens of millions of dollars, from spillway
over-design (Nathan and Weinmann, 1995).

The currently recommended estimation method of rare events between an AEP of 1 in 100
and the AEP of the probable maximum event (PME), as described in Chapter 13 of
Australian Rainfall and Runoff (1987) [ARRS87], is based on the criteria of providing
reasonable and consistent answers, and some degree of conservatism, rather than being
based on rigorous analysis of data. In this method, the shape of the frequency curve for rare
events depends on the slope of the frequency curve between the AEPs of 1 in 50 and 1 in
100, and on the magnitude and assigned probability of the PME. The interpolation method
can be applied to both rainfall and flood events. |

Since the publication of ARR87, frequency estimation methods have been considerably
improved. This has been achieved by the use of regional data and better parameter estimation
methods [eg. L-moments (Hosking, 1990)). In addition, the availability of more data also
contributes to improved frequency estimates. As such, there is a need to revise the currently
recommended method in the light of improved methodologies.

2



The CRC for Catchment Hydrology have undertaken several projects related to the
estimation of extreme floods to fill gaps in current knowledge on extreme floods. The
objectives of this project (Project D3) are:

(®) to better estimate the flood frequency curve up to an AEPof 1 in 2000,
through improvements in the associated extreme precipitation frequency
curve, and

(ii) to define the error band associated with extreme flood estimates for
various AEPs.

To meet these objectives, Irish, in a commissioned review (Irish, 1994) recommended
evaluation and adaptation of two regional rainfall frequency estimation methods: (i)
Schaefer's (1990) method and (ii) the IH-FORGE method (Reed and Stewart, 1989). The
methods were to be applied to. daily rainfall data for the Victorian region. This report
describes the evaluation and further development of the IH-FORGE method and application
of the further developed IH-FORGE method which is called the CRC-FORGE method. The
evaluation of Schaefer's method is described in McConachy (1996).



3. REGIONAL FREQUENCY ESTIMATION

3.1 INTRODUCTION

This chapter describes the important aspects of regional frequency estimation. The aim is to
introduce important concepts of regional frequency estimation in the context of the FORGE
approach.

Regional frequency methods facilitate derivation of quantile estimates for any site in that
region using data from several sites, including data from the site of interest. When data are
available for a particular site, the regional methods utilise the information from other
compatible sites to increase the accuracy of quantile estimates. On the other hand, for an
ungauged site, these methods estimate the quantiles using regional relationships between
frequency distribution parameters and site characteristics.

This chapter firstly describes the important factors that affect regionalisation. Then
approaches used for regional frequency estimation at gauged and ungauged sites are
presented. This is followed by a description of the regional frequency estimation concept
used in this study (the FORGE concept).

3.2 FACTORS AFFECTING REGIONAL FREQUENCY
ESTIMATION

The regional frequency estimation methods attempt to obtain maximum possible information
from data at all the gauged sites in the region. But in the process, they check for (i)
compatibility or relevance of data from different sites (homogeneity) and (i) usefulness of
additional information (effects of inter-site dependence of data). These are briefly described
in the following section.

3.2.1 Regional Homogeneity

The regional frequency estimation methods utilise compatible information from several sites
to derive the at-site frequency curve. The compatibility of data in relation to a specific
objective is known as regional homogeneity.

In the ideal situation, data from a homogeneous region are considered to be from a single
population, and assumed to be identically distributed. In reality, this assumption is rarely
satisfied, and data from different sites will exhibit some degree of heterogeneity. The
definition of regional homogeneity is dependent on which aspect of frequency behaviour is
considered. It is normally assumed that the differences in at-site frequency curves in a
homogeneous region are due to sampling variability.



If regional data exhibits a significant degree of heterogeneity, either an adjustment or
selection procedure needs to be applied to achieve the necessary degree of homogeneity to
make regional analysis meaningful. With the first approach, regional homogeneity can be
assumed after adjusting data by a known relationship that explains at least a significant part
of the variation over the region. As an example, the index methods of regional frequency
analysis assume regional homogeneity after standardising at-site data by the at-site mean (or
another statistical index).

A homogeneous group can also be obtained by selecting a sub-sample of sites. The selection
can be based on geographical contiguity [eg. [H-FORGE method (Reed and Stewart, 1989),
region of influence method (Burn, 1990)]. In contrast to this, the Schaefer's method (1990)
forms homogeneous data sets by choosing sites with similar L-CV and L-Skewness values,
ie. parameters which can characterise a 3-parameter distribution of standardised data.

Statistical tests for homogeneity

A large number of statistical tests for regional homogeneity can be found in the recent
literature. These tests check whether the between-site variability of a frequency curve or
distribution parameter {eg. cocfficient of variation, 1 in 10 year estimate) can be explained by
sampling variﬁbi]jty. The usefulness of different homogeneity tests for the purposes of this
study depends on the specific test statistic used, and how relevant it is to the estimation of
extreme events. The homogeneity of Victorian rainfall data is further discussed in Section
5.2.

3.2.2 Inter-site dependence

The annual maximum data in a region will show some spatial dependence because of both
large and small scale meteorological influences. Large scale meteorological phenomena, such
as El Nino conditions, influence wet or dry years which may affect annual maxima in a
larger region alike; small scale factors are more responsible for the high correlation between
data from close stations. However, other factors such as topography and location also affect
inter-site dependence.

Inter-site dependence can be viewed as disadvantageous for gauged sites, as it reduces the
value of additional information for regional analysis, ie. inter-site dependence limits the
increase in information from an increase in the number of stations in a region. On the other
hand, it is beneficial to the derivation of quantiles for ungauged sites, as it allows transfer of
information from gauged to ungauged sites. The effects of inter-site dependence on Victorian
rainfall frequency estimation are discussed in Chapter 6.



3.3 REGIONAL FREQUENCY ESTIMATION FOR GAUGED
SITES

Regional frequency estimation approaches for gauged sites can be divided into two groups:
(i) methods that use regional average values (eg. Schaefer, 1990, Hosking, 1990) and (ii)
methods that pool recorded data from several sites (eg. station-year method). The first uses
some form of averaging of at-site parameters to derive the regional frequency curve, whereas
the second assumes the space-time equivalence of data and jointly analyses data from all
sites.

In either of the above groups, the derivation of a frequency curve can be based on two
approaches: (i) parametric and (ii) non-parametric,.

3.3.1 Parametric approach

The parametric approaches are methbds that |
' (i)  assume a particular theoretical probability distribution of the data and
(ii) estimate the parameters of that distribution using a statistical estimation method.

Probability distributions

A number of probability distributions with a range of number of parameters can be found in
the literature. Some of the most popular distributions for floods are Log-Pearson 3 (LP3),
Log-Nomnal, Generalised Extreme Value (GEV) (Cunnane, 1989). Of these, LP3 has been
widely used for flood frequency analysis in Australia. For rainfalls, the GEV distribution
appears to be the current popular choice (eg. Dales and Reed (1989), Schaefer, 1990).

The number of parameters of a distribution characterises its flexibility. Distributions with a
small number of parameters tend to have small standard errors in parameter estimates but
large biases in quantile estimates. However, standard errors in parameter estimates decrease
with an increase in length of record. The use of a distribution with a larger number of
‘parameters is justifiable if a long record of data is available.

The choice of a distribution is very important when the extrapolated portion of the frequency
curve is used to estimate quantiles. The ability of a distribution to describe a given data set is
usually tested using statistics derived from the whole data set (see Section 5.1), even if only
one tail of the distribution is of direct interest. An inappropriate distribution has the potential
to result in a significant bias in extreme quantile estimates, which is the range of interest in
this study.



Parameter estimation

Some of the available methods for estimating parameters are: (i) probability weighted
moments, (ii) L-moments, (iii) method of moments (product moments) and (iv) maximum
likelihood method. The first two are used in this study and are briefly described below.

Probability weighted moments (PWMs) and L-moments are based on order statistics. PWMs
of a random variable X are computed as the expectation of the product of X and a power
function of the cumulative probability F(X) (Greenwood et al, 1979). '

L-moments developed by Hosking (1990) are linear functions of PWMs. L-moment ratios
are standardised L-moments and are analogous to product moment ratios {(eg. coefficient of
variation, skewness and kurtosis). Hosking (1990) presented L-moment ratios for some
common distributions; these can be used to identify an appropriate distribution for observed
data. In addition, he developed relationships to estimate parameters of a number of
distributions using sample L-moment estimators. Recently Wang developed direct sample
estimators of L-moments (Wang, 1996b), thus eliminating the need for computation of
PWDMs as an intermediate step. ’

Since sample estimators of L-moments are linear combinations of the ranked observations,
they are virtually unbiased and have relatively small sampling variance. In addition, they are
relatively insensitive to outliers. Nevertheless, L-moment estimators can be too robust,
because large sample values reflecting important information on the tail of the parent
distribution are given too little weight in the estimation (Bobee and Rasmussen, 1995).

In the parametric approaches to regional frequency analysis (eg. Hosking and Wallis, 1990),
the parameters of the regional distribution are determined as weighted averages of the
parameter values at individual sites. This averaging procedure further reduces the influence
of the largest regional observations in determining the shape of the upper distribution tail.
While this may be an advantage in the regional estimation of more frequent events (reduced
sensitivity to ‘outliers’), it limits the usefulness of the parametric approach for the estimation
of extreme rainfalls. '

A recent extension of L-moments are LH-moments, which are linear combinations of higher
PWMs. The LH-moments are more weighted towards larger observations than the L-
moments, and hence lead to improved high quantile estimates (Wang, 1996a). LH-moments
therefore appear to be better suited to regional estimation of extreme events, but there is still a
danger that the parameter averaging process reduces the influence of the largest regional
observations in determining the shape of the tail of the regional distribution.



3.3.2 Non-parametric approach

Non-parametric approaches first assign a plotting position to the observed data, and fit an
empirical curve locally to points on a probability plot, assuming both continuity and
differentiability to some order in the neighbourhood (Lull, 1995). This is in contrast to the a
priori assumption of the global form of the entire distribution function used in the parametric
approaches.

The frequency curves obtained from a non-parametric approach cannot be readily
extrapolated, due to the local fitting involved. However, in the case of regional methods, the
pooling of data from many sites in the region allows the definition of an empirical frequency
curve that extends to the range of extreme events, thus avoiding the need for extrapolation.
The shape of the frequency distribution in the region of the extreme upper tail is determined
by the plotting position of the largest events in the region, rather than being inferred from
data in the body of the distribution, as is the case in the parametric approaches.

For these reasons, the non-parametric approach is preferred for regional frequency
estimation of extreme events. An example of this approach is the IH-FORGE method,
described in Section 3.5, which was evaluated in detail and further developed during the
course of this study. ‘

A possible drawback of the non-parametric approach is the greater dependence of quantile
estimates on individual observations which makes the estimates more susceptible to data
errors, particularly errors in the largest observations. Special attention to the data checking of
these most influential observations is therefore required (see Section 4.4).

3.4 ESTIMATION OF FREQUENCY CURVES FOR
UNGAUGED SITES

Estimating the frequency curves for ungauged sites involves the transfer of 'appropriate’
information from gauged sites to ungauged sites. Homogeneity in the relevant characteristics
(eg. flood behaviour) is the important factor in determining the 'appropriateness’. Inter-site
dependence then determines the value of the information to the estimation at the site of
interest.

The transfer of information from gauged sites to an ungauged site involves two steps:
(i) identification of a homogeneous region to which the ungauged-site belongs, and

(i) utilisation of information from the homogeneous region, with or without adjustments,
to give an estimate at the ungauged site.



The identification of a homogeneous region can be based on geographical contiguity and/or
similarity of other available characteristics. For example, Burn (1990) selected a
homogeneous region based on geographical contiguity in his 'region of influence approach',
whereas Acreman and Sinclair (1986) and Schaefer (1990) formed the homogeneous group
of stations using catchment characteristics and mean annual rainfall respectively.

The information from an homogeneous region can be transferred to an vngauged site in three
ways: (i) direct use of the regional frequency curve determined for the homogeneous region
to which the ungaunged site belongs (eg. Acreman and Sinclair, 1986), (ii) estimation of the
quantiles at gauged sites and interpolation for ungauged sites usin g a geostatistical method or
other spatial interpolation method (eg. Stewart et al., 1995), or (iii) estimation of statistical
parameters such as 1-CV and L-Skewness for the ungauged site, using relationships with
site characteristics obtained from gauged sites, and calculation of quantiles (eg. Schaefer,
1990).

3.5 THE INSTITUTE OF HYDROLOGY FOCUSSED
RAINFALL GROWTH CURVE ESTIMATION
(IH-FORGE) METHOD

A large number of regional frequency estimation methods are described in the literature; they
cover different combinations of parameter estimation methods, homogeneity assumptions
and parameter regionalisation methods. This section first presents the FORGE concept, as it
is the basis for the IH-FORGE and the CRC-FORGE methods. Then the IH-FORGE

method. is described.

3.5.1 FORGE Concept

The FORGE concept developed by Reed and Stewart (1989) enables a 'growth curve' (ratios
of quantile estimates to the mean) to be drawn for a location of interest, the 'focal point’,
using regional data. The FORGE concept is identical to the basic concept of station-year
methods; observed data from a homogeneous region is pooled and a non-parametric
frequency curve is fitted on a probability plot. The homogeneity assumption for the FORGE
concept is the same as that used in the index-flood approaches, ie. an acceptable degree of
homogeneity within the region is achieved by standardising the at-site data by at-gite mean or
median values.

It is well known that any station-year method suffers from problems associated with inter-
site dependence. These problems have been minimised in the FORGE concept by using an
effective number of independent stations concept, described in Chapter 6.



3.5.2 IH-FORGE Method

The IH-FORGE method developed by Reed anc] Stewart (1989) uses the FORGE concept to
derive at site frequency curves from regional data.

Steps of the IH-FORGE method

The following steps are used to obtain a growth curve for a given focal point using annual
maxima from an homogeneous region.

Step 1:
Standardise annual maximum data for all stations in the region by their respective at-

site mean

Step 2:
Consider the three gauges nearest to the focal point

Step 3:
Select the six highest independent standardised values from the pooled data and plot
them against their AEP estimated from a plotting position formula

Step 4:
Double the number of stations nearest to the focal point and repeat Steps 3 to 4 until all

the stations in the region are included in the pooled data set.

Step Si?it a frequency curve by eye as a line of best fit to the plotted values.

In Step 3, a spatial dependence function is used to calculate the effective record length (Le) of
the pooled data, calculated using a modified station-year method. In this method, the
effective number of independent stations, N, is calculated using a spatial dependence
function for each year; when these are summed over the number of years, the result is the
effective record length (L¢). The L¢ value is used in the procedure to calculate the plotting
positions assigned to the six highest standardised annual maxima. The spatial dependence
model used by Reed and Stewart (1989) and improved models for Victorian data are
described in Chapter 6.

3.6 SUMMARY

This chapter has described important concepts of regional frequency estimation, with the aim
to place the FORGE concept in context. Key factors affecting the regionalisation procedure
were shown to be homogeneity and inter-site dependence. Regional estimation approaches
for gauged and ungauged sites require decisions on probability distribution, parameter
estimation and curve extrapolation. The FORGE concept appears to be well suited to form
the basis of the regional estimation procedure needed for this study.
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4. DATA

" This chapter describes the collation of a data base of annual maximum rainfalls from daily
rainfall records provided by the Bureau of Meteorology.

4.1 DAILY RAINFALL DATA FROM BUREAU OF
METEOROLOGY

The Bureau of Meteorology’s daily rainfall data base for Victoria, a total of 2144 daily
rainfall stations, were available for this study. In addition, daily data for rainfall districts
adjacent to the Victorian border from NSW and SA were also obtained to avoid “edge
effects”. Figure 4.1 shows the location of a total of 3030 daily-rainfall stations considered
for this sdy. The rainfall records cover the period from 1835 to 1993, although most of the
stations have data for only part of the period.

4.2 EXTRACTION OF ANNUAL MAXIMA

One to five day annual maxima were extracted using computer programs especially written
for this project. These programs are described in detail in Nandakumar, Siriwardena and
Weinmann {1996),

One of the programs, DayMaxExtract, graphically displays the daily rainfall data for a given
station with data from the 10 nearest stations within a 50 km radius. An example display is
given in Figure 4.2. This figure shows an aggregated amount of 280 mm for station 090001
on 28/03/1932, together with nearby station data; the distances between the main station and
other nearby stations are also displayed on the left side of the plot. This plot enables the user
to visually check the quality of the rainfall record and to disaggregate accumulated data using
an appropriate temporal pattern chosen from one of the nearby stations. Such a procedure
allows maximum use to be made of the available records.

Years with periods of missing data were analysed, by comparison with neighbouring
gauges, to check if the annual maximum event was likely to have occurred during the
missing period(s). If this was not the case, the observed annual maximum value for the year
with missing records could be included in the data set.

11



Figure 4.1 Daily rainfall stations available for Victoria and neighbouring regions

Day since 1 /1/1832

B doly rainfall O eccumulated raintan

280.0
090083 {4}
18.7 km)
0 |l . -—u—_—ll.l_.--__._—-.— 2%0.0
oggoos (3)
(10.4 km)
290.0 | mmill - . II. -.....-_._.. .0
0v0003 (2)
(18,7 km)
P - — A HWE! 290.0
0RCa13 (1)
(187 km}
280.0 . -, = 0
050201
o L . - | |
&8 78 a8 1ce

Figure 4. 2 An example plot for aggregated rainfall
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4.3 ANNUAL MAXIMUM DATA SETS USED FOR THE
FORGE APPLICATIONS

As mentioned in Section 4.1, about 3000 daily_rajnfall stations are available for Victoria and
the surrounding region; these have record lengths varying from 1 to 120 years.

It is reasonable to expect that the useful information for regional frequency analysis increases
with the increasing number of stations in the region. However, the net information does not
increase proportionalty with the increasing number of stations within a given area, due to
spatial dependence between stations. In addition, shorter record lengths introduce more
uncertainty in parameter estimates. Thus there is a trade-off between the number of stations
used and the useful information gained.

Three data sets were selected for this study after a subjective trade-off between the minimum
record length and the number of stations; the former determines the errors in estimated
parameters, whereas the latter affects the accuracy of spatially interpolated values. The
selected data sets are: '

Data Set 1 data from stations in Victoria which have 100 or more years of record
(Figure 4.3) |

Data SetIl  data from stations in Victoria and in Victorian border rainfall districts in
SA and NSW which have 60 or more years of record (Figure 4.4)

Data SetIIl  data from stations in Victoria and in Victorian border rainfall districts in
SA and NSW which have 25 or more years of record (Figure 4.5)

Data Set I was used in the development of models for the effective number of stations,
because long records of concurrent annual maxima are needed to reliably assess the effects of
inter-site dependence (see Chapter 6). Data Set I does not include the long record stations
from Victorian border rainfall districts, as this part of the analysis was undertaken before the
additional data became available.

For the application of the IH and CRC FORGE methods, a significant amount of extra
information ca be gained by reducing the cutoff length (ie. minimum record length) from 100
to 60 years, without losing much accuracy. Accordingly, Data Set II was used to obtain the
design growth factors (see Chapter 7). It will be shown in Chapter 9 that the spatial
variability of the index variable (mean annual maximum rainfall) is much higher than that of
the growth factors. To reduce the errors in spatially interpolated values, Data Set III was
used to map the index variable (24-hour annual rainfall maxima).

Table 4.1 summarises the properties of the raingauge networks in the above data sets. It is
evident from Figures 4.3 and 4.4 that the stations in both data sets give a reasonable cover of
the region, except in alpine and mallee areas.

13



Figure 4.3 Stations with 100 or more years of 1-day annual maximum rainfall

Figure 4.4 Stations with 60 or more years of 1-day annual maximum rainfall
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Figure 4.5 Stations with 25 or more years of 1-day annual maximum rainfall

Table 4.1 Properties of raingauge network in Data Sets I, IT and I

Duration (day)

1 2 3

Data Set [

Number of stations 136 137 137
Average record length (years) 107 107 107
Average area covered by each station (km?) 1770 1770 1770
Data Set IT-

Number of stations 756 756 760
Average record length (years) 86 86 86
Average area covered by each station (km?2) 390 390 390
Data Set II1

Number of stations 1396 1398 1399
Average record length (years) 65 65 65
Average area covered by each station (km?) 210 210 210
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4.4 QUALITY CHECK OF LARGEST ANNUAL MAXIMA

Because of a large volume of data processing involved, there is a possibility of failing to
observe anomalies in the extracted annual maxima, or to find other errors in the original data
provided by the Bureau of Meteorology.

s

As described in Section 3.5, the FORGE method uses a relatively small number of the
highest observed data values in the region. Hence any errors in these observations have the
potential to introduce significant error into the FORGE estimates. Accordingly, it was
decided to closely examine the 50 largest 1-day annual maxima used in the FORGE
applications, '

The check on the largest maxima was done by compaﬁng them with concurrent rainfall at
nearby stations, This process was facilitated by specially developed software. Rainfalls that
appeared to be very high compared to adjacent observations were considered suspicious; 17
suspicious values were identified. It is possible that these nonconforming data points were
due to very localised rainfalls (ie. thunderstorms), or due to recording or processing errors.

Figures 4.6 and 4.7 show two suspicious readings which are much higher than rainfalls at
nearby stations. By revisiting the original data sheets, the Bureau of Meteorology found
processing errors in two of the l-day maxima. One of the daily rainfall readings with
processing errors is shown in Figure 4.6; a value of 663 mm in this figure was amended to
167 mm. Figure 4.7 is an example of a localised thunderstorm which was noted in the
original recording sheet. The data for this event was therefore accepted.

4.5 ASSESSMENT OF STATIONARITY OF VICTORIAN
RAINFALL DATA

The data to be used in a regional frequency analysis have to satisfy the condition of
homogeneity, both with respect to their variation in space (regional homogeneity, see Section
5.2), and in time (stationarity). McConachy (1996) assessed the stationarity of Victorian
rainfall data, based on studies reported in the literature and additional stationarity tests on
data sets similar to the ones used in this study. She concluded from the literature review that
there was no evidence to suggest any significant trend in the annual maximum rainfall series.

McConachy applied the Mann-Kendall rank correlation test (Srikanthan and Stewart, 1991)
and the distribution-free CUSUM test (McGilchrist and Woodeyer, 1975) to a data set of
2144 Victorian rainfall stations and a subset including 694 stations with record lengths
exceeding 50 years. She concluded from these tests that the Victorian annual maximum
rainfall series data was sufficiently stationary to be used in a regional rainfall analysis.
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Figure 4.6 A suspicious rainfall reading at Station 070326
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Figure 4.7 A suspicious rainfall reading at Station 081041

17



4.6 STATIONS SELECTED FOR EVALUATION OF THE CRC-
FORGE METHOD ESTIMATES

In Chapter 7, the potential of the IH-FORGE and CRC-FORGE method for application in
Victoria is evaluated at the eight selected sites shown in Figure 4.8. These sites from Data
Set I are located close to storages where PMP estimates from the Generalised South-east
Australia Method (GSAM) are available for spillway adequacy studies. Accordingly, these
sites were initially chosen as focal points for the application of the IH-FORGE and the CRC-
FORGE methods.

In addition to the sites shown in Figure 4.8, five storages were selected to compare 1 in 106
AEP areal rainfalls estimated using the CRC-FORGE method and the GSAM method in
Chapter 9. The areal GSAM PMP estimates given in Table 4.2 were provided by the Burean
of Meteorology.

Table 4.2 GSAM method estimates of arecal PMP in mm (Source; the Burcau of
Meteorology)

Storage Area (km?2) Duration (hours)
' 24 © 48 72
i.ake Buffalo 1145 760 910 960
Rosslynne Reservoir 90 880 1040 1090
Thomson Reservoir 487 850 1010 1090
Lake Bellfield 100 611 737 772
Dartmouth Dam 3564 520 620 640
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5. IDENTIFICATION OF APPROPRIATE PROBABILITY
DISTRIBUTION AND EXAMINATION OF
HOMOGENEITY OF ANNUAL MAXIMA FOR
VICTORIAN REGION

In this chapter, the most appropriate probability distribution and the homogeneity of annual
maxima for the Victorian region are examined in the context of the application of the FORGE
method.

5.1 PROBABILITY DISTRIBUTION

As stated in Section 3.5, the FORGE concept is non-parametric and therefore an assumption
of a particular distribution is not needed. However, it will be shown in Chapter 6 that a
parametrié frequency curve is fitted to annual maxima in order to derive a generic relationship
for the effective number of independent stations (used in the calculation of plotting positions
for the FORGE points). In addition, one of the modifications suggested to the FORGE
method in Chapter 7 is a parametric distribution fit to the FORGE points instead of an eye-
ball fit.

It is evident from the literature that the Generalised Extreme Value (GEV) distribution has
been widely used to describe rainfall frequency curves (eg. Dales and Reed, 1989; Schaefer,
1990, ). A GEV distribution fitted using the regional PWM method has been shown to be
relatively insensitive to violations of the distributional assumptions and to modest regional
heterogeneity, and to have low variability and bias (Lettenmaier et al., 1987).

A number of techniques to evaluate distributional assumptions are available in the literature
(eg. Chowdhury et al., 1991; Hosking, 1990). Two of these methods are used to show that
the GEV 1is an appropriate distribution to describe annual rainfall maxima for the Victorian
region: (i) the L-moment diagram and (ii) the probability plot correlation coefficient. For this
analysis, data from stations with more than 60 years of data were used (Data Set I, Chapter
4)

5.1.1 L-Moment Ratio Diagram

Hosking (1990) introduced the L-moment ratio diagram technique for the purpose of
selecting a suitable distribution. An L-moment ratio diagram compares sample estimates of
L-skewness and L-kurtosis with their population counterparts, for a range of assumed
distributions.
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Figure 5.1 shows L-kurtosis vs L-skewness plots for 1, 2 and 3 -day maxima for the
Victorian region, along with theoretical curves for some popular 3-parameter distributions
(GEV, Pearson 3, Logistic and Pareto). It is evident from this figure that annual maxima for
the Victorian region cannot be fully described by any of the single distributions considered.
However, the GEV seems to be the best single distribution to describe data for the Victorian
region, as the spread of the points is approximately centred around the L-kurtosis-L-
skewness curve for the GEV distribution.

Some of the scatter in Figure 5.1 can be attributed to sampling variability. The significance
of sampling variability can be quantified using the probability plot correlation coefficient
described in the following section.

5.1.2 Probability Plot Correlation Coefficient (PPCC) Test

The PPCC test introduced by Filliben (1975) measures the linearity of a probability plot and
is given by:

i(x(i) *E)(Mi - M)
PPCC= =1 (5.1

n n 1/2
[Z(xm I N —M)’]

i=] i=l

where x(j) is an ordered observation, M; is the expected value from the selected distribution
for an observation of order i, n is the number of observations, and x and M are the means
of x and M respectively.

PPCC is near to unity when the sample is drawn from the sclected distribution; the plot of
ordered observations versus corresponding expected values M; for the selected distribution is

expected to be nearly linear.

The average values of PPCC for fitting GEV distributions to 1, 2 and 3 day maxima are
0.990, 0.990 and 0.989 respectively. This illustrates that the GEV distribution generally fits
annual maximum rainfall data for the Victorian region.

The critical values of PPCC at the 10% significance level were used to test whether the GEV
distribution describes at-site data. Chowdhury et al. (1991) provided the critical values up to
a record length equal to 100. For record lengths greater than 100, the critical values were
estimated using Eq. 5.2. This relationship was obtained using a regression analysis to the
critical value data given by Chowdhury et al. (1991):
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PPCC,, =1—(246.3+ 265.5)xn™0-534+0947x) 2 =0.961) (5.2)

where n is the record length and x is the shape parameter of the GEV distribution.

Figure 5.2 shows the locations of stations whose data can be described by the GEV
distribution at the 10% significance level. From this figure, it is evident that distributions of
annual maxima from a relatively small number of stations are not GEV, but there is no clear
spatial pattern in the occurrence of these stations, despite some consistency in the results for
different durations. For this reason, and from the evidence from the L-moment diagrams in
the previous section, it is reasonable to assume that the GEV distribution describes at-site
annual maximum rainfall data for the Victorian region.

5.2 HOMOGENEITY

Statistical tests for regional homogeneity are based either on sample statistics (eg. CV, L-
CV) or on quantile estimates from an assumed parent distribution (eg. AEP 1 in 10 quantile
estimates). The following sections present the results of these tests for Victorian data, using
stations with more than 100 years of data (Data Set I).

5.2.1 Homogeneity Based On Sample Statistics

Nandakumar {1995), using a CV-based test (Wiltshire, 1986), showed that the Victorian
region is homogeneous at the 1% significance level. However, the region was found not to
be homogeneous using Hosking and Wallis' (1993) heterogeneity measure based on the
sampling variability of L-CV. This test has a imited range of applicability, as L-CV can only
explain the between-site variation of rainfall quantiles for exceedance probabilities greater
than 0.002 (Hosking and Wallis, 1993). McConachy (1996) found no evidence of any
distinct spatial pattern in the sites that did not fit into a homogeneous region with respect to
L-CV.

5.2.2 Homogeneity Based on Parent Distributions

Another Wiltshire test, based on the distribution of annual maxima, shows the Victorian
region as not being homogeneous at the same significance level. Using the same data set,
McConachy (1996) showed that the region is homogeneous with the Lu and Stedinger's
(1992) test which is based on the AEP 1 in 10 rainfall quantile from a GEV distribution.
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5.2.3 Interpretation of Test Results and Implications for Application of
FORGE Concept

Unfortunately, the four homogeneity tests referred to above are of limited relevance to
extreme rainfall estimation, The tests are based either on the overall fit of a distribution at
different sites (sample statistics tests) or on the fit in a specified quantile range (quantilé
tests). In contrast to other index-flood methods which use all the annual maxima available,
the methods based on the FORGE concept use only the highest standardised values to derive
the regional growth curve. The tests give little direct information on the homogeneity of these
data points used to fit the extreme tail of a regional distribution.

Out of the four tests, the Lu and Stedinger (1992) test, which relates to the AEP 1 in 10
rainfall, is probably the most relevant. It indicated homogeneity of the Victorian rainfall data
with respect to the quantiles for an AEP of 1 in 10 (McConachy, 1996). McConachy also
concluded that standardised maximum annual rainfall data from the Victorian region was
homogeneous with respect to L-Skewness and higher L-moments. As these play a primary
role in determining the upper tail of a distribution, it is reasonable to assume that the highest
standardised annual rainfall maxima for the Victoria form a homogeneous data set.

It is worth noting that the generalised methods of PMP estimation used in Australia (BOM
1994, 1996) also assume homogeneity of standardised extreme rainfall values over relatively
large areas. In the case of Victoria, the Bureau of Meteorology used a “working hypothesis”
(BOM 1996) to divide the overall GSAM region into two sub-regions: the Coastal Zone
(south of the Great Dividing Range) and the Inland Zone (North of the Great Dividing
Range). No evidence was given to justify the adopted dividing line between the two sub-

regions.

It is shown in Section 7.5, that the applications of the CRC-FORGE method to the whole
Victorian region and the GSAM sub-regions produced similar growth curves. These results
confirm that the Victorian region can be assumed homogeneous for standardised extreme

rainfalls.
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5.3 SUMMARY

This section has examined the distnbution and homogeneity of annual maxima for the
Victorian region. Using the L-moment diagram and the probability plot correlation coefficient
techniques, it was shown that the general extreme value (GEV) distribution satisfactorily
describes the annual maximum data for the Victorian region. Based on results from other
studies, the extremes for Victoria and the neighbouring region can be assumed to be a
homogeneous region in terms of the rainfall extremes of interest in the FORGE
methodology.
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6. EXYFECTS OF INTER-SITE 'DEPENDENCE ON
REGIONAL FREQUENCY CURVE

6.1 INTRODUCTION

This chapter presents the effects of inter-site dependence on regional frequency analysis. The
aim is to develop a spatial dependence model which will be used in application of the
methods using the FORGE concept.

As stated in Section 3.2.2, spatial dependence in annual maximum data reduces the net
information available in regional frequency analysis of site data. Accordingly, the presence
of spatial dependence reduces the accuracy of quantile estimates, because of the reduced

number of independent stations.

This chapter begins with an introduction of the effective number of independent stations
concept. The estimation methods of the effective number of independent stations (N.) are
then described. Finally, models for the estimation of N, are developed and tested using

Victorian annual rainfall maxima.

6.2 EFFECTIVE NUMBER OF INDEPENDENT STATIONS

The effective number of independent stations concept has been introduced to quantify the
effects of inter-site dependence (or spatial correlation) on regional estimates of frequency

distribution parameters. The value of N, depends on which specific parameter is being

estimated.

The following sections describe measures of Ne for two basic regional approaches: (i}
methods that use some form of regional average parameters and (ii) methods that poo] annual

maximum data.

6.2.1 N, for Methods Using Regional Averages

In regional averaging approaches, distribution parameters are obtained using some form of
averaging of at-site parameters (following standardisation); this has the effect of reducing the
sampling error of the parameter estimates. In these methods, the intersite dependence does
not introduce any bias, but increases uncertainty in quantile estimates (Stedinger, 1983), thus

negating some of the benefit of averaged parameter estimates.
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The effective number of stations for these approaches is defined with respect to a particular
statistic, such that the variance of the mean of the chosen statistic calculated from Ng

independent stations is equal to the variance of the value calculated from N spatially
dependent stations.

N, defined with respect to regional mean
For a region with N sites with concurrent data of length of n, the variance of the pooled
mean is given by (Alexander, 1954):

o2 _
om? =g [1+(N-1)p] (6.1)

where © is the standard deviation of the combined data and p is the arithmetic mean of the

N(N-1)/2 correlations between every pair of the N terms.

From Eg. 6.1, Alexander (1954) obtained NE1 to give the same standard deviation of

regional mean as in an uncorrelated data set as:

. N
T 1+(N-Dp (6.2)

For large N values, N = 1/p
N, defined with respect to regional variance and skewness

Hosking and Wallis (1988) argued that Eq. 6.2 is not applicable for regional flood frequency
analysis, because the regional data are not used to_ estimate the mean but rather the second

and higher order moments required for parameterisation of a regional distribution.

From Stedinger's (1983) analyses, the equivalent number of independent stations with

respect to regional averages of the second and third moments can be given by Eqs. 6.3 and
6.4 respectively:

N=—N (6.3)
1+ (N -1)p?

V—— (6.4)
1+(N-1)p°

where p* and p° are the average of the squares and cubes of the correlations respectively.
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For large N values, N7 —1/p® and N’ —1/p°. This illustrates that for given N, N,

increases with increasing order of moments since ~1.0<p <1.0.

For annual maximum data which can be described by a 3-parameter distribution, the quantile
estimates are function of moments up to the third order. The correct value of N should
therefore be a combination of Egs. 6.2 to 6.4. As the three moments have a varying degree
of influence on different quantile estimates, the effective number of independent stations
should vary with the exceedance probability of the quantile to be estimated. The third-order
moment has more influence at lower exceedance probabilities. Consequently Ne will be

larger for high exceedance probability quantiles.

6.2.2 N, for Methods Pooling Recorded Data

In the regional frequency estimation approaches that pool the standardised annual maximum
data from several sites, time sampling is substituted by space sampling. If the spatial data
were independent, each maximurn value in the pooled data could be assigned a plotting
position computed from the aggregated period of the record (the total record length: L = Nn).
This is often referred to as the "station-year method". However, the effective record length
(Le) is invariably less than the total number of annual maxima in the pooled data because of

presence of inter-site correlation.

The effective record length of pooled- data determines the positions of observed annual
maxima on a probability plot. Thus, the effective number of stations for this approach can be
defined such that N, independent stations will provide the same record length as N spatially
independent stations. Thus, N is defined as the ratio of effective record length (Le) and the
average record length at each station (7).

N = % (6.5)

n
As N, determines the positions of the points on a probability plot, any errors in this measure

of spatial dependence in annual maxima will introduce bias in the quantile estimates.
Measure of N,

The effective number of independent stations can be calculated from the relative displacement
of two rainfall frequency curves, the regional maximum curve and the regional average curve
(or typical curve) (Dales and Reed, 1989). For this, a regional maximum series is formed by
choosing the highest value of the standardised annual maxima from all the stations in the
raingauge network (or region) considered each year. The regional average curve is the
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average curve for the raingauge network considered (ie. the average of the standardised at-

site curves).

Consider a region with N stations, each station having a record length of n. If the regional
average curve and the regional maximum curve are drawn as shown in Figure 6.1, the
regional maximum curve is fitted to the points that would formerly have been considered as
outliers in the frequency curves of individual stations. However, in the regional context they

are not outliers, the question is only at what probability they should be plotted.

If the regional average curve is assumed to represent the best estimate of the frequency curve
for the region, it indicates by how much the annual exceedance probability of a particular
rainfall depth on the regional maximum curve needs to be adjusted to produce an equivalent
probability estimate for that given rainfall amount. This provides another method for

estimating No.

Regional maximimum
curve

Standardised rainfall

!

I

I

Reoi I
egional average

curve |

Annual exceedence probability

Figure 6.1 Illustration of regional maximuin and regional average curves

Let the regional average cumulative frequency function be Fy(x) and the cumulative
frequency function for the regional maxima be Fy(x). If we use a simple plotting position

formula, the exceedance probability of the largest rainfall amount from n regional maxima is

1
P == (6.6)
[
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This treats the regional maxima as if they came from a single station (i.e. (Ne=1) and will

require an adjustment. The exceedance probability of the rank one event in the region would

be estimated from the regional average curve for the region as

Fo=1 (6-?)

€

Since n=n, using Egs. 6.5, 6.6 and 6.7 it can be shown that
P R
N =—~ .
=P (6.8)

For a given quantile value x, N, can thus be interpreted as the ratio between the exceedance
probabilities indicated by the regional maximum curve and the regional average curve, Dales
and Reed (1989) came to the same result following a different derivation. They defined an

effective number of independent stations ( N,) based on the cumulative frequency functions

for the regional maximum curve and the regional average curve as

F =F" (6.9)

r I

But, F,=1-P, and F.=1-P,

H

Thus

1-P, =(1-R)"

=1-8.P, +%N,(Ne —DP ... (6.10)

At low exceedance probabilities, we may neglect higher order expansions and hence

-4

P
=_r 6.11
N P | (6.11)

This is equivalent to Eq. 6.8 and hence,
N =N, (6.12)

It can be shown that Eq. 6.8 or 6.11 could also have been derived using other plotting
position equations, such as the Cunnane plotting position equation for lower exceedance
probabilities.
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Using Eq. 6.9,

_ InF (x)

(6.13) -
InF,(x)

N, (x}
Dales and Reed (1989) showed that In(N,) represents the horizontal separation between the

regional maximum curve and a regional average growth curve on a Gumbel plot, as shown

in Figure 6.2.

caarve

Standardised rainfall

Regional average
curve

Annual exceedence probability

Figure 6.2 The effective number of stations, based on a Gumbel piot

Dales and Reed (1989) estimated N assuming that (i) annual maxima are GEV distributed
and (1) the value of N, is constant irrespective of rainfall quantile. This means that the
distribution of regional maxima was assumed to be GEV with a shape parameter equal to that

for the regional average curve. The constant N, is hereafter referred to as N°.

If the shape parameters of fitted regional maximum and regional average curves are not
equal, then N varies with quantiles and hence exceedance probabilities. The variable N, is

referred toas N,
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6.3 ESTIMATION OF THE CONSTANT EFFECTIVE NUMBER
OF INDEPENDENT STATIONS

The following section describes the development of generic estimation equations for an N
assumed to be invariant with AEP using easily obtainable parameters. This enables fast
estimation of N, for a given sample network and reduces the effects of sampling variability
in estimating N, from a single network. Thus, N, estimated with these generic equations
would have smaller uncertainty than that from a siﬁgle network estimate, provided the
equation gives a satisfactory fit to the data.

6.3.1 Dales and Reed's Spatial Dependence Model

Dales and Reed (1989) obtained an empirical equation that relates N, to the effective area (A)

spanned by the selected stations and the number of stations (N) in the form

.
DN+ dinA+elnN (6.14)

In

where A = 2.5+(mean distance between stations)2 and ¢, d and e are regional coefficients.

The data points used in the derivation of this equation were the values of, N and A for each
sample network of rainfall stations in the region. This equation is hereafter called the
Dales and Reed Constant N, Model. It should be noted that Reed and Stewart used
this model in the IH-FORGE method.

In the present study, Eq. 6.14 was calibrated using annual rainfall maxima from stations
with 100 or more years of data (Data Set I). For this, the network sizes were: 2, 4, 8, 16 and
32 stations. A value in the regional maximum series was only chosen if the annual maximum
for the corresponding year was available at all stations in that network. Data Set I has more
years with complete records at all stations than Data Set II (60 or more years of data).
Therefore, Data Set I has the potential to produce a longer regional maximum series than
Data Set I1.

Table 6.1 shows the calibrated coefficients of Eq. 6.14. A goodness of fit measure, the
cocefficient of efficiency, given in this table indicates the degree of departure of points from
the 1: 1 line. The coefficient of efficiency is given by Aitken (1973) as:

o SN~ NE - FNe - Np)?

S Vo (6.15)
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where N is the estimate of N; by the spatial dependence model and I_V? is the mean of the

N? values computed directly from the data. A value of E close to 1 indicates only a small

systematic deviation from the 1:1 line, which is the case for the models in Table 6.1. (It
should be noted that the directly computed values of N, used as the basis for this comparison

are also assumed to be invariant with AEP.)

The comparison of N, computed using regional maximum and regional average curves, and
that estimated by the spatial dependence model (Eq. 6.14) is shown in Figures 6.3(a), 6.4(a)
and 6.5(a). It should be noted that log scales in these figures were chosen because the errors
in plotting position estimates are indicated by the errors in In( N.). These figures illustrate
that the scatter in the spatial dependence model estimates increases with increasingl N. This
introduces higher uncertainties in Ne estimates for larger N values which has serious

implications for high quantile estimates from the FORGE approach. Thus this model appears
not to be'suitable for Victorian data.

Table 6.1 Coefficients for Dales and Reed Constant N, Model (Eq. 6.14) and CRC Constant
Ne model (Eq. 6.16), and coefficient of efficiency (E) for each one.

Duration D. & R. Constant N model CRC Constant N. model
(days) c d e E a b E

1 0.177  0.061 -0.029  0.949 0.991 -0.699  0.985
2 0.053 0.072 -0.042  0.955 0.981 -0.713  0.983
3 0.006 0.075 -0.045 0.960 0.982 -0.724  0.981

6.3.2 CRC Constant N, model - An Empirical Relationship for N, based on

Average Correlation Coefficient

In this section, a relationship between N° and the average correlation coefficient is

investigated. The aim is to find an altemative model for the Dales and Reed Constant N,

Model found to be unsuitable for Victorian data in the previous section.

The CRC Constant N model given by Eq. 6.16 was calibrated using Data Set I (as for the

spatial dependence model). The identification of the equation form was based on an
investigation of a generated data set with known correlation coefficients and is described in
detail in Nandakumar (1996).

N b5 6.16
n N P (6.16)
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The fitted parameters of the CRC Constant N, mode] are given in Table 6.1. The closeness
of the parameter 'a’ to 1.0 suggests that Eq. 6.16 could be reduced to a one parameter
model. The E values close to unity indicate that the use of the CRC Constant Ne model will
result in improved N, estimates. This is also reflected in Figures 6.3(b), 6.4(b) and 6.5(b)
which show that the scatter at higher N values is significantly reduced. The CRC Constant
Ne model is therefore recommended for use in the FORGE procedure to reduce the
uncertainty in rainfall quantile estimates.
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Figure 6.3 Comparison of directly computed N. (from regional average and maximum

distributions) and N, estimated using: (a) Dales and Reed Constant N model
and (b) CRC Constant N, for 1-day maximum rainfali
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Figure 6.4 Comparison of directly computed N, (from regional average and maximum

distributions) and N. estimated using: (a) Dales and Reed Constant N, model
and (b) CRC Constant N, for 2-day maximum rainfall
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Figure 6.5 Comparison of directly computed N, (from regional average and maximum

distributions) and N, estimated using: (a) Dales and Reed Constant N. model
and (b) CRC Constant N for 3-day maximum rainfall

6.3.3 Discussion

The coefficients of Eq. 6.16 given in Table 6.1 suggest that N, = N for independent stations
(p =0) as should be the case. However, for totally dependent rainfall amounts (p=1,
N, #1, in contrast to the theoretical expectation. This could Bc an artefact of the simple
equation for the relationship between N, N and p used. Thus, for the case of p=1, the

errors in N, are high for large N values. However, this has little effect on the estimates from

the methods using the FORGE concept, as the average correlation coefficient between sites is
normally much less than one.

It is generally accepted that the correlation of rainfalls recorded at two stations is inversely
related to the distance between the two stations. Figure 6.6 shows that for Victorian rainfail
data this relationship can be expressed by a logarithmic equation. Using this form of

relationship and the substitution
In A = a+ b In(distance), Eq. 6.16 can be rearranged in the following form:

InN,
InN

' +d'lnA (6.17)

where ¢' and d' are coefficients.

This is equivalent to the Dales and Reed model (Eq. 6.14) without the last term. As the
values of coefficient 'e’ in that model are small, the influence of this term on calculated N°

would be minimal; in this event, Eq. 6.14 reduces to Eq. 6.17. Thus it can be concluded that
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the large scatter in estimates of N from the Dales and Reed Constant Ne Model is due to the

scatter in the relationship between the correlation coefficient and distance shown in Figure
6.6.

y = -0.399LOG(x) + 1.098

0.75

o
i
1

0.25
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|

-0.25 , ;
1 10 100 1000

Distance {(km)

Figure 6.6 Relationship between correlation coefficient and distance for Victorian 1-day
annual maxima (500 points randomly selected from 9180 values are shown)

The use of the CRC Constant Ne model in the applications of methods using the FORGE
concept has an advantage over a constant N model based on distance or area (eg. Dales and
Reed Constant' N, model), as it significantly reduces the uncertainty in N, especially for
large N. The only difficulty is in calculating the correlation coefficient for pairs of stations
where only limited concurrent rainfall record is available. In such a case the fall back position
would be to firstly compute the correlation coefficient from a regional relationship with
distance and then to apply Eq. 6.16. This is equivalent to disaggregating the Dales and Reed
Constant N; Model into two stages. Thus a spatial dependence model of the Dales and Reed
type can be replaced with the CRC Constant N model to improve the rainfall quantile
estimates if sufficient data (more than 20 years concurrent record) exists to compute average

correlation coefficients.
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6.4 ESTIMATION OF THE EFFECTIVE NUMBER OF
INDEPENDENT STATIONS FROM A VARIABLE N,

MODEL

In Section 6.3, a constant N, was estimated by assuming that the shape parameters of
regional and regional average frequency curves were equal, i.e. that the two curves were
paralle). In reality, this may not be true; Pescod (1991) and Buishand (1984) have found that
N, increases as the exceedance probability decreases. The considerations in Section 6.2.1
also support the proposition of a variable N.. Hence, the following sections describe the

development of a Variable N, model.

6.4.1 Estimation of a Variable N, for Victoria

For a given rainfall quantile, Ne is expressed by the horizontal displacement between the
regional maximum and the regional average curves on a Gumbel plot (Section 6.2.1). The
variable effective number of independent stations (N)) for a given rainfall quantile was

computed using Eq. 6.13; the rainfall quantiles were derived from the regional average GEV

distribution for a range of Gumbel reduced variate (y) values, where y = -In -In(1-AEP).

It was shown in Section 6.3.2 that N, is a function of the average correlation coefficient
(p). Therefore, N! is also expected to be dependent on p. Accordingly, the estimates of

N for different p values were treated separately.

For a selected focal point, the network size was varied, and N calculated for a range of y

and p values. To ensure a wide range of p, three different networks of N stations with
different inter-station distances were selected for each focal point. The distance groups are:
(1) the stations closest to the focal point, (ii) the stations falling in the mid-distance range and
(i11) the stations furthest from the focal point. The N values used were 2, 4, 8, 16 and 32.

The variation of N, with y was investigated down to the smallest exceedance probability
justified by the effective record length of the pooled data. To obtain this initial estimate of the
effective record length, data was assumed to be independent. Accordingly, the total record
length of pooled data was used to calculate the limiting value of the reduced variate for the
regional average curve.
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Figure 6.7 Variation of inN, /In N calculated from GEV distribution fit for Victorian 1-day
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The station networks obtained for the N-station groups were divided into 10 classes based
on their p. These average correlation coefficient classes had equal width and ranged between
0 and 1. Figures 6.7 (a) to (e) show the variation of the average of InN; /InN with y for
the I-day rainfall duration. In these figures, only p classes which have more than 20 cases
are shown. The average correlation coefficient is also shown along with the number of
cases. The horizontal lines indicate the average N. estimated using the CRC Constant N
model. Corresponding plots for 1-day and 3-day rainfall durations show similar variations
of InN /InN (see Appendix A).

From Figure 6.7, it is evident that N increases with increasing y values (or reducing
exceedance probability). Typically, N, is higher than N°. As the FORGE-concept mainly

deals with six highest standardised annual maxima of pooled data, the use of N' for N,

would underestimate the effective record length and, as a result, quantile estimates would be
overestimated. This is demonstrated in Chapter 7 using generated data with known

population parameters.

Although Figure 6.7 indicates a general tendency for N to increase with increasing y
values, it does not show explicitly any regular variation with N or p . This is possibly due
to inherent heterogeneity in the data and sampling variability. Accordingly, to identify a
suitable model function for N}, a synthetic data set with known population parameters was

“used; this is described in the following section.
6.4.2 Identification of Model Function Using Synthetic Data

The relationship between N,, y, N and p was investigated using generated data with known

- population parameters. This allows control over the issues of homogeneity and sampling
variability in this investigation.

Data generation

For the generation of annual maximum data, it was assumed that: (i) generated maxima come
from the same population, (i) data from different years are spatially independent (ie. a
particular year data for a given site is not correlated with other year data for other sites) and
(iii) data from the same year are dependent with a given degree of correlation. To represent
the Victorian data, the regional average Victorian GEV distribution parameters of 1-day
maxima were used for data generation. The multi-site maxima data were generated according
to the following steps.
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(i)  For a given correlation coefficient, a vector of random multivariate normal deviates
with zero mean and a covariance matrix whose elements are the constant cross
correlations is generated using the Matalas (1967) method.

(i) The normal variate vector is transformed into a GEV distribution with the regional
average parameters for Victoria.

To reduce the sampling variability due to a limited record length, sequences of annual
maximum data for a region with 48 stations, each having a record length of 1000 years was
generated. The (constant) correlation coefficient between the annual maxima from different
stations was varied from 0.0 to 0.5 in steps of 0.1. In all, 99 replicates of regional data (each
replicate consists of data for 48 stations) were generated for each constant correlation
coefficient.

Table 6.2 gives the GEV parameters for the parent distribution used in the data generation
and the mean parameters for the generated data. The parent distribution parameters used to
generate the data seem to be reasonably well preserved by the generated model. The

correlation coefficients (p) are not quite as well preserved, as p was not directly introduced
in the GEV data generation (correlated standard normal deviates were first generated and then

transformed to a GEV distribution). However, strict preservation of a target p is not essential
for this exercise; the important requirement is to know what the average p value is. This is

then assumed to represent the population correlation coefficient.

Table 6.2 Comparison of the parameters of the parent distribution and the distribution for
generated data (distribution: F(x)=exp[-{1-x(x-£)/a}1/¥]) and correlation coefficient, p.

Parameters
p £ o K

Parent Gen.* - | Parent Gen.* |Parent Gen.” | Parent Gen.
0.000 0.002 0.811 0.810 0.280 0.280 -0.092 -0.092
(0.032) (0.011) (0.007) (0.021)

0.100 0.084 0.811 0.810 0.280 0.279 -0.092 -0.091
(0.033) (0.011) (0.007) (0.023)

0.200 0.172 0.811 0.812 0.280 - 0.279 -0.092 -0.089
(0.033) (0.011) (0.007) (0.025)

0.300 0.263 0.811 0.810 0.280 0.278 -0.092 -0.088
(0.032) (0.011) (0.007) (0.026)

0.400 0.356 0.811 0.811 0.280 0.276 -0.092  -0.087
(0.031) (0.011) (0.007) (0.026)

0.500 0.452 0.811 0.811 0.280 0.275 -0.092 -0.087
(0.028) (0.010) (0.007) (0.026)

* the values given in parentheses indicate the standard deviation of estimates
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Variable N, for generated data

The variation of N, with Gumbel reduced variate y is examined for networks of 4, 8, 16 and

32 stations in Figure 6.8. For a network of a given size, the correlation coefficient was

varied from 0.0 to 0.5 in a step of 0.1. Each point in Figure 6.8 was obtained by averaging

In( N}) values from 10 random combinations of stations (for a given number of stations and

fixed correlation coefficient) to reduce the sampling variability. The In(N}) values were

divided by In(N) to standardise the value for the variation of N.
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It is evident from Figure 6.8 that N increases with increasing Gumbel reduced variate (y)
value and, for a given y value, N, decreases with increasing correlation coefficient. The

ratio In( N, \/In(N) approaches unity for large y values. The following form of a relationship

seems to satisfy the general behaviour of these points for 520. 1.

InN}
InN

=1-a{y-Bin(PInN)~y}* for y<BpimN-y (6.18)

For the data points with p>0.1, the least squares estimates of «, B and vy are 0.0039, 2.74
and 10.63.

For p<0.1, the coefficient o was linearly weighted such that it will be zero when p=0 (ie.

N’=N, for p=0).

Figure 6.8 also shows the curves for Eq. 6.18 with the fitted parameters given above. It
appears from this figure that the uncertainty in the In{ N} )/In(N) estimates is large for low
values of N. However, this has only limited impact on the estimated In( N.) values. Figure

6.9 shows the overall satisfactory performance of Eq. 6.18.
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Figure 6.9 Comparison of N, estimated directly from regional average and regional
maximum growth curves and N estimated by Eq. 6.18 for generated data
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6.4.3 Estimation of Variable N Model Parameters for Victoria

The Variable N. model given by Eq. 6.18 was calibrated for points in Figure 6.7 and
corresponding values for 2-day and 3-day durations. In the calibration, the model response
was log-transformed to achieve constant variance of residuals. The residuals are the
differences between model responses and corresponding values calculated directly from the
regional average and regional maximum growth curves. The variance of residuals needs to

be constant in order to estimate uncertainty in quantile estimates (Chapter 8).

Figure 6.10 shows comparisons of In(Ng) estimated'using the CRC Constant N model
( N¢) and the Variable N model ( N)) with that calculated directly from the regional average

and the regional maximum curves for a range of Gumbel reduced variates. Although the
scatter about the 1:1 line appears to be similar for both models, the systematic bias in the
Variable N model estimates is lower than that with estimates using a fixed N.

Table 6.3 gives calibrated coefficients of Eq. 6.18 using Victorian data (Data Set I) along
with the coefficients of efficiency (E), a goodness of fit indicator. For comparisbn, E values
for fitting the CRC Constant N, model are also given. Higher E values for the Variable N,
model than those for the CRC Constant N, model also suggest that there is less bias in the
Variable N model estimates than is present in the CRC Constaﬁt N¢ model estimates.
i .
6.4.4 “Asymptotic Independence” and Implications for CRC-FORGE
Estimates

The dependence of In N.'/In N on In N may be somewhat surprising. It is thought that the
property of asymptotic independence indicated by the analysis of observed and generated
rainfall data is associated with sampling effects related to the highest ranking events in the
regional maximum distribution. For large data sets (ie. large values of N) the asymptotic
independence occurs at larger values of y (or lower AEPs) than for smaller data sets (or
smaller regions). As the FORGE points to be plotted are also affected by these sampling
effects, it is appropriate to apply an N, model that accounts for the effect of sample size,

such as the model given by Eq. 6.18.

Although the effects of record length on N." were not investigated in detail, the above
considerations on sample size suggest that asymptotic independence is also affected by the
average record length at the N stations. The fitted coefficients in Eq. 6.18 are based on 1000
years of data (generated data set) and approximately 100 years of data (Victorian Data Set I)
respectively. For stations with shorter records from Data Set II (minimum 60 years) the
computed N, values may thus be slightly underestimated.
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Table 6.3 Parameters of Variable N, model (Eq 6.18)

*

Duration (days) .o B Y E .
1 0.0013 4.41 . 179 0.963 (0.877)*
2 0.0022 2.74 15.1 0.895 (0.781)
3 0.0021 3.03 15.2 0.927 {(0.756)

* E values in parentheses are for CRC Constant N model

(It should be noted that the E values listed in this table are based on a comparison with
directly computed N, values which allow for variation of N with AEP. The E values for the
CRC Constant Ne model are therefore different from the ones listed in Table 6.1)

6.5 COMPARISON OF THE EFFECTIVE RECORD LENGTH
ESTIMATES USING CRC CONSTANT AND VARIABLE N,
MODELS

The effective record lengths were estimated using CRC Constant N model and Variable N,
models for station networks with varying sizes. For this, stations with more than 60 years of
data were used (Data Set II). For a selected focal station, the station network was selected as
for the IH-FORGE method (Section 3.5) ie. number of stations (N) were 3, 6, 12, 24, 48,
96, 192, 384 and 756.

Figure 6.11 shows the typical variation of total record length and the effective record lengths
from the CRC Constant N, and Variable N, models, when the number of stations around a
focal station (079042) gradually increases. As expected, the effective record length estimates
from the Variable N; model are higherrthan those from the CRC Constant N. model. The
deviation of effective record length curve from total record length curve first increases with
increasing N, and then decreases, although the average correlation consistently decreases
with increasing number of stations. This is due to the fact that extreme observations from a
network tend to be more independent, regardless of the high degree of correlation which

more frequent rainfalls may exhibit (see Section 6.4.4).

The effective record length and the effective number of independent stations for Data Set 11
are given in Table 6.4. The effective record length for the Variable Ne model is significantly
higher than for the CRC Constant N model. Table 6.4 also shows that the N, estimates
from the CRC Constant N, model decrease with duration, as the average correlation
coefficient increases with duration. However, this was not observed for the Variable N,

model, which could indicate that the extremes for longer durations are more independent than
those for shorter durations.
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Table 6.4 Total record length (L), effective record length (L) for Data Set I

Duration N L "CRC Const. N. Mode] CRC Var, Ne Model
(days) (years) L, (years) N® Le (years)  Ng*
1 756 64971 27088 315 (42%) ‘41560 483 (64%)
2 756 65005 21757 253 (33%) 48191 560 (74%)
3 760 65230 20661 241 (32%) 46947 547 (72%)
* Ne values in parentheses are percentages of N
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Figure 6.11 Variation with number of stations of: total record length (L), effective record
lengths estimated using CRC Constant N, model [L, (Constant)] and Variable

N, model {L (Variable)], and average correlation coefficient (p)
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6.6 EFFECTS OF DISTRIBUTIONAL ASSUMPTION ON
ESTIMATES OF THE EFFECTIVE NUMBER OF
INDEPENDENT STATIONS

The methods using the FORGE concept require estimates of the plotting positions of the
highest regional rainfalls; the basic principles are explained in Section 6.2.2. In applying
these principles, the effective number of independent stations is calculated by extrapolating
the regional average curve. The degree of extrapolation increases with increasing size of the
raingauge network, as the regional maximum curve shifts upward on a Gumbel plot. As
illustrated in Figure 6.12, different distributions fitted to the same data result in different
values for N, especially in the extrapolation zone.

regional maximum
at site maximum

[+]

Standardised rainfali

Figure 6.12 Illustration of the effects of distribution assumption on N, estimates for higher
exceedance probabilities

To illustrate the effects of the distribution assumption on N, estimates, four 3-parameter
distributions were fitted for a typical raingauge network with 32 stations. They were: (i)
generalised extreme value (GEV) (ii) generalised logistic (GLO) (iii) Pearson 3 (PE3) and
generalised Pareto (GPA). Figure 6.13 shows the fitted regional average and regional
maximum curves for the typical raingauge network. Also shown in this figure is the variation
of In{(Ng)/In(N) with y. [Note: In(N,)/In(N) values greater than one were restricted to unity.]
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In Figure 6.13, the In(N,)/In(N) ratio increases with y for all distributions and exceeds unity,
except for the GLO distribution. This is most pronounced for the GPA distribution, where
the ratio tends towards infinity, as the distribution has an upper bound. As illustrated in the
figure, the GPA distribution is clearly not appropriate for this application. The PE3
distribution shows a similar behaviour as the GEV, but the In(N,/In(N) ratio reaches unity at.

a lower value of the Gumbel reduced variate.

With the GLO distribution, the In(NyIn(N) ratio peaks to a value lower than unity and
decreases with increasing y. This means that the upper tails of the regional maximum and the
regional average distributions tend to converge. A similar variation was found when this
distribution was applied to the whole Victorian data (Data Set I), as shown in Figure 6.14.
The In(N,)/In(N) ratios for this figure were computed as described in Section 6.4.1 fitting the
GLO distribution to annual maxima instead of the GEV distribution.

The variation of the In(N,yIn(N) rétio with y derived using the GLO distribution contradicts
the expectation that extreme rainfalls tend to be spatially independent. As the In(N,y/In(N)

ratio decreases with y, the CRC-FORGE estimates .based on that distribution would be
higher than assuming the other distributions.

The inconsistent behaviour of the In(N,y/In(N) ratio for the GLO distribution may bc
attributed to the fact that the distribution does not describe data for the Victorian region
satisfactorily (see Figure 5.1 in Chapter 5). Nevertheless, the GLO distribution was
considered to be a possible alternative distribution, and it was therefore used to further
examine the implications on estimates of N,. This was investigated using synthetic data as

summarised in the following section.

6.6.1 Estimation of N, from GLO distribution using synthetic data

To reduce the effects of sampling variability and to have a known population distribution, the
variation of the In(N,)/In{(N) ratio was examined for a long synthetic data set with a GLO
distribution. Synthetic GL.O data were generated using a method similar to that described in
Section 6.4.2. For this, the average Victorian GLO parameters were used, as determined
from Data Set (I).

The variation of the average In(N,yIn(N) ratio with y for each correlation group is illustrated
in Figure 6.15. The value greater than one for the In(N, yIn(N) ratio in this figure reflects the
effects of extrapolation of two curves. This figure shows that extreme data tend to be
independent, in contrast to the results obtained from the Victorian data, using the GLO
distribution. Thus it appears that the hypothesis of extreme data tending to be independent
will be accepted, if an appropriate distribution for the given data set is selected.
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6.6.2 Implication of distribution assumption for estimates from the Methods
using the FORGE concept

The methods using the FORGE concept (eg. IH-FORGE and CRC-FORGE) obtain the
regional growth curve by assigning appropriate plotting positions to highest rainfalls
observed. The plotting positions are calculated from a spatial dependence model, using the
effective number of independent stations estimated from the regional maximum and the
regional average rainfall frequency curves. Thus, in the FORGE concept, the highest
observations (normally considered as outliers) shown at Point A are shifted to Point B
(Figure 6.1) by a distance AB (=InN,) on a Gumbel plot. If the appropriate displacements
are applied, the FORGE data points will fall on the fitted regional average curve. For a large
homogeneous data set (ie. data from all sites are identically distributed), the FORGE growth
curve should be identical to the regional average curve. However, an inappropriate
distributional assumption could result in the displacement being too small or too large, thus
leading respectively to overestimation or underestimation of the correct regional average

curve.

It is evident from comparison of Figures 6.8 and 6.15 that the values of the In(N,In(N)
ratio for the same N, p and y values, are similar. This indicates that the displacement

between the regional maximum and the regional average curves is not very sensitive to the
distributional assumption. In addition, the In(Ney/In(N) ratio has a limiting value of unity
irrespective of assumed distribution. Thus the distribution of the regional average curve can
be determined with some confidence from the distribution of the regional maximum curve, if
the latter is known.

As no distribution for the highest standardised annual maxima is assumed in the FORGE
concept, the FORGE points tend to be free from any distribution assumption, despite the
model for the effective number of independent stations beings based on the GEV
distribution. |

6.7 CONCLUSION

This chapter described the effects of inter-site dependence on various regional frequency
estimation approaches. The concept of effective number of independent stations was
investigated for the approaches that pool regional data(eg. methods using the FORGE
concept) In addition, the effective number of independent stations computed from regional
maximum and regional average curves was shown to be appropriate to use in calculation of
plotting positions in the methods using the FORGE concept.
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A model for a constant effective number of independent stations based on the average
correlation coefficient in a network of stations was developed. This model was found to give
more precise estimates of N, than the Dales and Reed Constant N model, used in the TH-
FORGE method.

A model for a vanable effective number of independent stations was also developed, based
on an investigation of generated data. The effective record length of 756 stations with 60 or
more years of 1-day rainfall maxima was calculated to be 27,100 and 41,500 using the CRC
Constant N, model and the Variable Ne models respectively; these values are equivaient to
42% and 64% of the total number of station years of data.
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7. APPLICATION OF IH-FORGE AND CRC-FORGE
METHODS TO VICTORIAN DATA

This chapter describes the application of the IH-FORGE and the CRC-FORGE methods to
Victorian data; the aim is to investigate the performance of both of these models. When
evaluating these two methods, it should be kept in mind that the IH-FORGE method was not
specifically intented for estimation of extreme rainfalls in the AEP range aimed for in this
study.

In the sections below, the application of the IH-FORGE method to Victorian data is firstly
described. This is followed by the validation of the IH-FORGE method using synthetic data,
and a description of the resulting modifications. Then the modified FORGE method (CRC-
FORGE) is applied to selected Victorian focal stations. The performance of both models is
examined using independent rainfall quantile estimates.

7.1 APPLICATION OF THE IH-FORGE METHOD

The TH-FORGE method was applied to the eight selected focal stations described in Section
3.5. For this, at-site annual maxima were standardised using at-site mean annual maxima as
in the TH-FORGE method. It might be noted that, in their recent IH-FORGE applications,
Stewart et al. (1995) used the median annual maximum; this standardising variable has a
fixed frequency of two years and is less sensitive to outliers. The influence of the outliers on
the mean is minimal for the length of records used in this study (ie. record length of 60 or
more years), thus the difference between two methods of standardisation is assumed
negligible.

7.1.1 Fitting a Growth Curve

Reed and Stewart (1989) obtained the growth curves for South West England region by
‘eyeball’ fits to the data points. In drawing the growth curve, they assigned the theoretical
value of the GEV type I distribution for the lower end ie. the curve passes through the point
(0.577,1) in a Gumbel plot. The upper end of the curve was drawn in sympathy with growth
curve plots for neighbouring points. In this fitting procedure, a fair degree of subjectivity is

involved.

In their latest use of the IH-FORGE method, Stewart et al. (1995) first selected a number of
segments on the reduced variate axis. Then, in each segment, straight lines were jointly fitted
to pooled data and regional maximum data such that each pooled data segment joined up with
the previous segment and the slopes of corresponding pooled and regional maximum
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segments were equal. The separation of the two parallel lines was determined from a spatial
dependence model. As this method relies on the number of data points in the sub-samples to
draw each segment line, it is expected that uncertainty in these estimates would be higher
than fitting a single curve to the whole sample. However, the fitted line is Little affected by
parametric distribution assumptions. The curve is also forced through the point (0.577,1) on
a Gumbel plot, as in the IH-FORGE method.

In the current study, to minimise subjectivity and reduce uncertainty, a GEV type I or II
curve was fitted to the plotted FORGE points using a least-square method on logs of the
standardised data. The use of a GEV curve is justifiable as it was found to fit Victorian
annual maximum rainfall data (Chapter 5). In this procedure, the FORGE concepts
aretherefore used as a parameter estimation method to fit the upper tail of a GEV distribution.

Figures 7.1 shows the FORGE growth curves on a log-normal probability plot for the
selected focal stations for 1-day annual maxima; for durations 2 and 3 days, the growth
curves are given in Appendix A. In these figures, the locations of focal stations are also
illustrated. ARR87 1-day point rainfall estimates for annual exceedance probabilties (AEPs)
of 1in 50 and 1 in 100 are shown for comparison.

7.1.2 Removal of Bias in Fitting of Growth Curves

One of the drawbacks of the IH-FORGE method is that the growth curve is biased when the
focal point is close to the rain gauge station where the highest rainfall in the region was
observed. This is due to the fact that the highest observed values in the overall region are
also mncluded in the smaller regions used in the initial FORGE steps.

Because the same highest annual maximum is plotted at different exceedance probabilities
(depending on the size of the region), the fitted growth curve is likely to shift to the left, as
shown in Figure 7.2a. This highest annual maximum is really an outlier for lower recurrence
intervals (smaller regions) and hence this point should be screened out before fitting the
growth curve.

The identification of the outlier can be based on the spread of a group of points which have
similar standardised rainfall values, in the direction of the exceedance probability axis. If the
separation between a point and the extreme point on the right within this group is greater than
a set limit, the point on the left can be assumed to be an outlier for the particular FORGE
step, and be screened out for the curve fitting.
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Figure 7.1 IH-FORGE growth curves for 1-day rainfall maxima at selected Victorian
stations (continued overleaf)
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Figure 7.1 (continued) JH-FORGE growth curves for 1-day rainfall maxima at selected‘

Victorian stations
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Figure 7.2 Effects of outliers on IH-FORGE growth curve at station 024015

Figure 7.2b shows the growth curve fitted to the FORGE points after outliers were screened
out. For this, the set limit of separation was assumed to be a value of 1.16 on a Gumbel plot;
this value was adopted as it represents the average of the standard deviations of residuals of
FORGE points (along the Gumbel reduced variate axis) obtained for a number of focal
points. Therefore, the points located further than 1.16 Gumbel reduced variate units to the
left of the plotting position corresponding to the largest region were neglected in the fitting of
the distribution. The omitted points are shown as stars on Figure 7.2b.

7.1.3 A Comment on Selecting Six Data Points for each FORGE Sub-region

In the IH-FORGE method, the adopted number of data points (the six largest values) to be
selected in each FORGE sub-region was not justified by any theoretical argument. However,
it is clear that the number should be (i) large enough to make use of the information from the
highest rainfall events in the region and (ii) small enough that the effective number of stations
(Ng) for the computation of plotting positions can be assumed to be the same for all the data

points selected from the sub-region.

The selection of six values appears to be a reasonable compromise between these two
competing objectives. Detailed sensitivity studies would be required to allow the selection of

an optimurmn number of data points.

59




7.2 MODIFICATIONS TO THE IH-FORGE METHOD BASED
ON THE RESULTS OF DATA GENERATION

The FORGE concept involves pooling of data from regions of increasingly larger size to
estimate point rainfalls of smaller frequency. Although the FORGE concept appears to be
justifiable for uncorrelated data, it has not been validated for correlated data. The following
sections validate the IH-FORGE method using generated data with known population

parameters and inter-site dependence.

7.2.1 Validation of the IH-FORGE Method

The use of generated data with known population parameters ensures that the assumption of
homogeneity (ie. the regional data is identically distributed) is satisfied. It also allows to
check whether the IH-FORGE method reproduces the population growth curve.

To identify any ;ystematic anomaly in the IH-FORGE method, the generated regional data
was assumed to have the same degree of spatial dependence, ie. the correlation coefficient
between the annual maxima of all pairs of stations in the region was assumed to be a known
constant. In reality, however, the correlation between rainfall maxima decreases with
increasing distance; thus the average correlation coefficient decreases with increasing size of
a region. It also depends on the distribution of the rain gauges within a 'region’. However,
the assumption that the correlation between all annual maxima in a region is constant does
not contradict the FORGE concept as it still obtains more information from all the extremes
by pooling the data.

The data sets generated in Section 6.4.2 were used for the IH-FORGE validation. As the IH-
FORGE estimates are very sensitive to the highest rainfalls of the pooled data, the data
generated with different correlation coefficients were checked for any systematic differences
and were found to be free from any bias.

The IH-FORGE method was applied to 99 replicates of generated data of 1000 years. For
each replicate, the first of 48 stations was considered as the focal station and the region size
was progressively increased to include more stations. In the IH-FORGE applications, N°
was calculated using the CRC Constant N model given by Eq. 7.1; the coefficients of this

equations were calibrated using the generated data set. A GEV distribution was fitted to the
FORGE points. The parameters of the distribution were determined from a least square fit on
a probability plot, as explained in Section 7.1.1.

InN;
In

=1.015-0.821p 2= 0.999 (7.1)
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The performance of the IH-FORGE method is evaluated by comparing the rainfall quantiles
calculated from the parameters of the growth curve for each replicate with the quantiles
calculated from the parameters of the average growth curve. As the parameters of the parent
distribution were preserved well in the generated data (see Table 6.2), the parent distribution
and the average growth curve were coincident (illustrated later in Figure 7.5). The
parameters of the average growth curve were estimated using the probability weighted
moment approach given by Dales and Reed (1989).

In Figure 7.3, standardised rainfalls calculated from the average growth curve for a range of
annual exceedance probabilities (AEPs)are compared with those estimated by the IH-FORGE
method for the corresponding AEP. The IH-FORGE growth curve and the average growth
curve agree reasonably well and without bias for independent data (correlation coefficient =
0.0), although there is significant scatter for the large quantiles. However, on average, the
IH-FORGE method significantly overestimates the extremes for spatially correlated annual
maxima. The degree of overestimation increases with increasing correlation coefficient. The
source of this overestimation appears to be an underestimated N, using the CRC Constant N,
model (Eq. 7.1) for low AEPs, as the extreme events tend to be relatively independent
(Buishand, 1984 and Pescod, 1990). The development of a Variable N, model, which
allows for reduced spatial dependence of extreme events, was described in Section 6.4. The

performance of this Variable Ne model will now be evaluated.

7.2.2 Validation of the IH-FORGE Method with the Variable N, Model

The IH-FORGE method with the Varia‘ble Ne model (Eq. 6.18) was applied to the generated
data set. In the IH-FORGE method, the effective record length of pooled data is calculated
using a modified station-year method (see Section 3.5). This needs to be modified, as the
Variable Ne model requires the effective record length to calculate y from

y =-In-In[1-AEP(X,)] (1)

where AEP(X,) 1s the plotting position of the rank 1 observation for the pooled data from the
selected FORGE sub-region, as determined from the Cunnane plotting position formula.

This calls for an iterative approach, as described below.
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Figure 7.3 Comparison of IH-FORGE growth curve estimates and average growth curve
estimates (from 99 generated sequences of 1000 years)

An iterative procedure to calculate the variable N,

The initial effective record length L¢’ is assumed to be the total number of station years of
pooled data, and this is used to calculate an initial value of the Gumbel reduced variate y°..
An initial value of N’ can now be calculated from Eq. 6.18 for each year, and these values
are added to obtain a new effective record length L. This revised effective record length is
then used to calculate the a new Gumbel reduced variate value y’. This procedure is repeated
until there is no significant difference in successive values of the effective record length (or
Gumbel reduced variate) estimates. |
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Comparisons

Figure 7.4 summarises the results of the JH-FORGE applications to the generated data for
correlation coefficients of 0.0, 0.3 and 0.5, From the éomparison of Figures 7.3 and 7.4, it
is clear that, after the introduction of variable Ne, bias in IH-FORGE estimates is réduced for
these three values of the correlation coefficient. This illustrates the need for use of the
Variable Ne model in IH-FORGE applications with real data,

Use of focal point data

A close examination of Figure 7.4 reveals that the scatter near the lower end seems to be
high, which indicates relatively large uncertainty in the IH-FORGE estimates for -high to
medium AEPs, and could also have an effect on estimation for -low AEPs. This can be
clearly seen in Figure 7.5a in which the fitted growth curve significantly deviates from the
average growth curve. To eliminate this deviation, it was decided to introduce data from the
focal point in the growth curve fitting procedure. If the data is not available for the focal
point, at-site data from the nearest (or most similar) stations could be used instead.

Figure 7.5b shows that the IH-FORGE growth curve is close to the average growth curve,
after introducing data from the focal point in the curve fitting. This modification thus makes
the procedure less sensitive to data points in the extreme tail of the distribution. To give equal
weights to both the regional and the at-site data, the number of data points introduced from
the focal station was limited to the number of FORGE points (from the regional data). Only
the highest ranking data points from the focal station were introduced to give weight to low

frequency at-site data.

Figure 7.6 shows that the introduction of focal point data reduced the scatter at high AEPs.
In addition, the introduction of at-site data reduced the tendency of the fitted curve to adjust
to the largest regional observations. This produced more stable estimates of low frequency
events - some of the largest events now seem to be treated as outliers in the fitting of the

Curve.

7.2.3 Summary of Proposed Modifications to the IH-FORGE Method

The meodifications to the IH-FORGE method described in the previous sections appear to
have the potential to improve its estimates significantly; the following modifications are

therefore suggested.

Estimation of the plotting positions for FORGE data points:
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(i) use of the Variable N model instead of a constant Ne model (Dales and Reed
Constant N model or CRC Constant N, model) to estimate the plotting
positions of FORGE data points (Section 7.2.2).
Fitting of a distribution line:
(i1) inclusion of focal point data together with FORGE data points Section 7.2.2),
(iii) screening of outliers among the FORGE data points (Section 7.1.2),
@iv) fitting of a GEV distribution by a least squares method, rather than an eye-ball fit
of a non-parametric distribution line (Section 7.1.1).
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The above modifications were adopted to improve the IH-FORGE method for the
applications described in the following section. The improved FORGE method is hereafter
called the CRC-FORGE Method. A list of all the steps in the CRC-FORGE design rainfall
estimation procedure is given in Appendix D.
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Figure 7.6 Comparison of modified TH-FORGE growth curve estimates and average
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66



7.3 APPLICATIONS OF THE CRC-FORGE METHOD TO
'VICTORIAN DATA

The CRC-FORGE method was applied to Victorian data (Data Set II}. Figures 7.7 (a) to (h)
show the CRC-FORGE growth curves for 1-day annual maxima; for durations of 2 and 3
days, the growth curves are given in Appendix A. As for the application of the IH-FORGE
method described in Section 7.1, the distribution of the FORGE data points was assumed to
be GEV and the parameters of the curves were determined from a least square fit in log space
giving equal weights to all points. Also shown in the figures are the LE. Aust. (1987)
[ARRB7] point rainfall estimates for AEPs of 1 in 50 and 1 in 100.

7.3.1 Comparison of CRC-FORGE Estimates with Independent Design
Rainfall Estimates

Comparison wi-th ARRS87 Estimates

For the selected stations, Figures 7.8, 7.9 and 7.10 compare the original and CRC-FORGE
estimates with ARR87 estimates for AEPs of 1 in 50 and 1 in 100 for 1, 2 and 3 day maxima
respectively. As expected, the CRC-FORGE estimates of 1-day rainfall for a given AEP are
comsistently lower than the IH-FORGE estimates for the same AEP, due to the higher -Ne
values used in the former. However, this is not always the case for very extreme rainfalls for
the other two durations, as the effects of increased Nevalues were offset by introduction of

focal point data and by elimination of outliers (see Figures B.3 and B.4 in Appendix B).

On average, the CRC-FORGE estimates are closer to the ARR87 estimates than the IH-
FORGE estimates. This improvement was achieved mainly by the introduction of focal point '
data. In most cases, the differences between the CRC-FORGE and the ARRS87 estimates are
marginal and can be explained by the regional smoothing applied to obtain the coefficients
for estimation of the AEP 1 in 50 and 1 in 100 rainfalls in ARR87. For example, the
differences appear to be higher for stations 085091 and 083017 which are located near alpine
arcas where the raingauge density is low. Two adjustments made to the at-site values in
ARRA&7 are: (1) a statistical adjustment to allow for the influence of stations with short
records and (ii) a meteorological adjustment when drawing contours to the data points

(personal communication Canterford, 1995).
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Figure 7.7 CRC-FORGE growth curves for 1-day rainfall maxima at selected Victorian

stations (continued overleaf)
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Figure 7.7 (continued) CRC-FORGE growth curves for 1-day rainfall maxima at selected

Victorian stations
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Comparison with Other Extreme Design Rainfall Estimates

McConachy (1996) applied the modified Schaefer method and three other regional rainfall
frequency estimation methods to Victorian rainfall data (Data Set I). For the eight sites
shown in Figure 7.7 the estimates of the AEP 1 in 2000 design rainfall obtained by the

modified Schaefer method were all within + 10% of the estimates from the CRC-FORGE

method. The corresponding results from the three other methods, at the four sites they were

applied to, were also quite close.

The results of the above comparisons confirm that the CRC-FORGE method is able to
produce consistent design rainfall estimates for Victorian sites for an AEP range of 1 in 50 to
1 in 2000.
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7.4 SENSITIVITY OF CRC-FORGE ESTIMATES TO
DELINEATION OF REGION -

For the application of the FORGE concept, the whole of Victoria was assumed to constitute a
homogeneous region (Section 5.2.3). However, to estimate probable maximum
precipitation, the Bureau of Metéorology divided the state into two homogeneous sub-
regions, namely the GSAM Inland and Coastal Zones (BOM, 1996). This section examines
the sensitivity of CRC-FORGE estimates to the assumed boundaries of homogeneous

regions.

Figures 7.11 compares the growth curves obtained from a region covering the .whole of
Victoria (plus adjoining areas of NSW and SA), with those obtained from an appropriate
GSAM Zone (either Inland or Coastal), From these figures it is evident that differences
between the curves derived for the whole region and those derived for GSAM sub-regions
are negligible compared to uncertainties in the estimates (Chapter 8). Accordingly, the
assumption that Victoria is a homogeneous region is reasonable for extreme rainfall
estimation purposes.

7.5 CONCLUSION

The IH-FORGE method was applied to the eight selected Victorian focal stations, and
rainfall estimates of 1 in 50 and 1 in 100 AEP produced by it were found to be comparable
with ARR87 estimates.

Using generated data, the JH-FORGE method was shown to overestimate extreme rainfalls
for spatially correlated data. The use of the Variable N, model in the IH-FORGE method was
found to eliminate bias in its estimates. In addition, the introduction of focal point data also
improved the quantile estimates. From the validation using synthetic data, the following
modifications were made to the IH-FORGE method:

(i) use of the Variable N, model instead of a constant N, model to estimate plotting
positions of FORGE data points (Section 7.2.2); ’

(1) inclusion of focal point data together with FORGE data points (Section 7.2.2);
(i) screening of outliers among the FORGE data points (Section 7.1.2);

(iv) fitting of a GEV distribution by a least squares method, instead of an eye-ball fit
of a non-parametric distribution line (Section 7.1.1).
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The CRC-FORGE method's estimates were found to be (i) generally lower than the IH-
FORGE estimates and (ii) comparable with estimates from ARR87. The CRC-FORGE
estimates for 1 in 2000 AEP were also consistent with results reported by McConachy using
four different regional rainfall frequency estimation methods.
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8. ESTIMATION OF UNCERTAINTY IN CRC-FORGE
ESTIMATES

8.1 INTRODUCTION

Rainfall frequency estimates are subject to errors from a number of sources. The aim of this
chapter is to estimate uncertainty in the CRC-FORGE growth curve due to the most
important of these errors.

The reliability of frequency estimates is generally measured by confidence limits to the
frequency curve. The uncertainty in the quantile estimates depends on the underlying
assumptions; larger uncertainty is generally associated with less restrictive assumptions
(Rosbjerg and Madsen, 1995). Inappropriate assumptions have the potential to result in
systematic errors (bias) especially in the region of extrapolation.

The two major assumptions of homogeneity and distribution choice involved in the
application of the FORGE concept, were dealt with in Chapter 5. The implications of the
distributional assumption on N and thus on the plotting position estimates were discussed in
Chapter 6 (Section 6.5). This chapter presents the derivation of confidence limits for the
CRC-FORGE growth curve to account for sampling errors in the estimate of N and in the
estimated parameters of the fitted growth curve.

The next section presents the uncertainty estimation methods used in this study. The
derivation of the 90% confidence limits for the rainfall frequency curves at the eight selected
focal stations is described in Section 8.3.

8.2 METHODS OF UNCERTAINTY ESTIMATION

The models (or equations) for the variable N and for fitting the growth curve were calibrated
using a least-squares method, after appropriate transformation of the model response. If the
residuals satisfy the least-squares assumptions that they (i) are independent from each other,
(i) are normally distributed, and (iii) have constant variance, the posterior distribution of
model parameters can be estimated from the observed data (Kuczera, 1983). Using the
posterior distribution of parameters, a Monte-Carlo simulation approach can be used to
derive the confidence limits for the estimated growth curves. The derivation method of the
posterior distribution of model parameters and the Monte-Carlo simulation method are
described in the following sections.

76



8.2.1 Posterior Distribution of Model Parameters

Assume that a model takes the following form
gi = fxiP) + & (8.1)

where g; is the ith observed value, f( ) is the model function, xj is a vector of inputs

corresponding to ith observed value, B is a parameter vector and &; is the ith residual. The

residual € is a normally distributed random number with a mean of zero and a variance of 62-

Given that the residuals satisfy the least-squares assumptions, it can be shown that the

probability distribution function of the parameter vector B for this model is well
approximated by a multivariate normal distribution with mean $, and covariance matrix

[T Tpl ], where T is a matrix of derivatives evaluated at By (Kuczera, 1983).

8.2.2 Monte-Carlo Simulation

A Monte-Carlo simulation method can be used to determine the effects on model response of
input or model errors. A parameter vector is randomly sampled for a required number of
times (say Nsamp) from the posterior distribution, and the performance of the model

evaluated for each sampled parameter vector. A random error [0,0] is added to the response.

The Ngamp responses for a given input are ranked and 1000% and 100(1-0)% percentiles
are referred to as the 100(1-20)% prediction limits. If the random error is not added to the

response, the ranked responses result in the 100(1200)% confidence limits.

8.3 DERIVATION OF CONFIDENCE LIMITS FOR THE CRC-
FORGE GROWTH CURVES

If basic assumptions on the distribution and homogeneity of data are satisfied and daily
rainfall readings are assumed to be free from any reading or processing errors, uncertainties
in the CRC-FORGE estimates are mainly attributed to the parameter estimation errors in the
variable Ne model and in the growth curve fitting model. The following sections describe the

derivation of the confidence limits for the selected focal stations due to these errors.
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8.3.1 Posterior Distribution of Variable Ne Model Parameters

The variable N model relates Ne to the average correlation coefficient (p), the number of
stations in a network (N), and the annual exceedance probability via the Gumbel reduced
variate (y) (Eq. 6.18, Chapter 6). The adopted form of this model assumes asymptotic
independence of rainfall extremes at different sites in a region.

Using the method given in Section 8.2.1, the posterior distribution of parameters (Table 8.1)
was obtained. For this, the model response (InN,/InN) was subjected to a log-transformation
in order to satisfy the constant variance assumption, as stated in Chapter 6 (Section 6.4.3).
Figure 8.1 shows the scatter plots of residuals with the model responses, which illustrate
that the constant variance assumption is reasonably satisfied. '

8.3.2 Posterior Distribution of Growth Curve Parameters

Despite the GEV distribution having three parameters, only two effective parameters were
fitted in the CRC-FORGE method, because the growth curve was forced through the
theoretical point (0.57,1) on a Gumbel plot (ie. the mean of the standardised values).

Bardsley (1989) showed that a GEV distribution can be described by three different points
on a Gumbel plot. As one of the points is fixed, the rainfall estimates for the Gumbel
reduced variates 5 and 9 (corresponding to AEPs of 1 in 150 and 1 in 8100) were considered
as the effective parameters. These effective parameters were fitted to the log-transformed
standardised rainfall data points using a least squares method. The posterior distribution of
the effective parameters was then obtained as described in the previous section.

Table 8.1 Posterior distribution of Variable N model parameters

Duration Parameter
(days) o B Y

mean std mean  std mean  std
1 1.3x10-3 3.2x10-5 4.4 0.07 17.7  0.18
2 2.4x103 9.6x105 2.8 0.08 145 0.24
3 2.4x10-3 8.0x105 2.8 0.07 146 1.20
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8.3.3 Derivation of Confidence Limits

The 90% confidence limits of the growth curve for a given focal station were derived using

the following steps.
Step 1

Using the posterior distribution given in Table 8.1, 100 samples of the Variable N, model
parameter vector were generated. The generation procedure (Matalas, 1967) preserved the
cross correlations between parameters.

Step 2

Using each Variable Ne model parameter vector sample, the FORGE points for the focal
station were obtained. This resulted in 100 sets of the FORGE points.

Step 3

For each set of the FORGE points, a growth curve was fitted after including the focal point
data, and the posterior distribution of the growth curve parameters was obtained as described
in Section 8.3.2. This resulted in 100 sets of the posterior distribution of growth curve
parameters,

Step 4

From each set of the posterior distribution of growth curve parameters, one sample of the
parameter vector was generated. This resulted in 100 growth curve parameter vector
samples.

Step 5

Using each sample of the growth curve parameter vector, rainfall quantiles were calculated
for a set of annual exceedance probabilities (AEPs). From this, 100 rainfall values for each
AEP were obtained.

Step 6

For each AEP, the 100 rainfall values were ranked, and the 5t and 95t percentiles were
assigned as the 90% confidence limits.

It should be noted that the above steps only dealt with ihe parameter errors for the derivation

of confidence limits. If the residuals of the model fittings (e in Eq. 1) were included in the
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above steps, the resulting percentiles in Step 6 would be the 90% prediction limits for the
‘growth curve.

8.3.390% Confidence Limits of the Growth Curves for the Selected Focal
Stations

Figures 8.2 (a) to (h) show the 90% confidence limits for the growth curves of 1-day rainfall
for the eight selected stations. The confidence limits for durations of 2 and 3 days are given
in Figures B.3 and B.4 in Appendix B. The 90% confidence limit curves are quite close to
the mean growth curve. As expected, the width of the confidence limit band increases with
decreaSing AEP. The 90% confidence limits are within 3% at the AEP of 1 in 2000.

However, they increase to about £10% at the AEP of 1 in 106, as this AEP is in the
extrapolation region.

The very narrow confidence intervals imply a high degree of precision of the CRC-FORGE
growth curve estimates. This was achieved by using data from a large number of stations for
calibrating the variable Ne model and by the inclusion of the focal point data for the curve
fitting. However, it should be noted that the variance of residuals was not stabilised even
after the log-transformation. From Figure 8.2, it is obvious that the constant variance
assumption is hard to satisfy because two sets of data were used: (i) the FORGE points and
(ii) focal station data. The variability of focal station data is significantly lower than that of
the FORGE points (Focal station data points are plotted in ranked order). Thus it is expected
that for lower exceedance probabilities the true confidence intervals would be wider than
those shown in Figure 8.2.

The confidence limits shown in these figures are based on the assumptions made about the
distribution, the regional homogeneity and the functional form of the variable Ne model. Any
violation of these assumptions would result in biased estimates of rainfall quantiles especially
for lower exceedance probabilities. Considering the potential bias that may arise from partial
violation of these assumptions, it is recommended to use the CRC-FORGE estimates to a
lower exceedance probability limit of 1 in 2000.
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8.4 CONCLUSION

This chapter has described the derivation of the 90% confidence limits of the estimated
growth curves for the selected focal stations. It was assumed that the basic assumptions on
distribution and homogeneity of annual rainfall maxima were satisfied, and that the adopted
form of the variable Ne model was appropriate. The computed confidence limits thus express
only the uncertainty attributed to parameter estimation errors in the variable Ne model and the
fitting of the growth curve. The confidence limits are also based on a somewhat unrealistic
assumption of constant variance of the plotted data points (after log transformation).

The derived confidence limits were found to be quite tight and were about 3% of the
growth curve estimates at the AEP of 1 in 2000. For lower AEPs, the confidence Tirnits
widen gradually and, more importantly, the effects of the model assumptions become more
pronounced. Thus, the CRC-FORGE method is recommended for estimation of design point
rainfalls to an AEP of 1 in 2000.

The derivation of design values for any site in Victoria, as described in the next chapter,
involves a considerable degree of spatial smoothing of the growth factors calculated for the
sites in Data Set II. This smoothing is expected to further reduce sampling variability but
may introduce a small degree of bias in estimated growth factors.
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9. DERIVATION OF EXTREME DESIGN RAINFALLS FOR
VICTORIA

In Chapters 7 and 8, it was illustrated that the CRC-FORGE method can be used at rainfall
station sites to derive design rainfalls up to an annual exceedance probability of 1 in 2000.
This chapter describes the methodology to obtain estimates of extreme design rainfall for any
location in Victoria.

9.1 CRC-FORGE ESTIMATES FOR SELECTED FOCAL
STATIONS

The CRC-FORGE method is a special form of the index frequency estimation’ method. It
involves separate estimation of the index variable (the mean annual maximum rainfall depth)
and the growth factors for selected AEPs. The following sections describe the adjustment of
the CRC-FORGE estimates for regionalisation,

9.1.1 Adjustment of Growth Factor Estimates for Regionalisation

The CRC-FORGE method was applied to all the (mmore than 750) focal stations in Data Set
I1. For these focal stations, the growth factors for rainfall durations 1,2 and 3 days and for
AEPs of 1in 50, 1in 100, 1 in 200, 1 in 500, 1 in 1000 and 1 in 2000 were obtained from
the fitted growth curves. '

Figures 9.1 and 9.2 show the comparisons of 1 and 2 day growth factor estimates and 1 and
3 day growth factor estimates respectively for AEPs of 1 in 100, 1 in 1000 and 1 in 2000.
These figures indicate that the growth factors for different durations within this range are
closely related. The limited scatter around the regression line (generally less than 10%) can
be mostly explained by sampling variation. The slopes of the linear regression lines (forced
through the origin) for all AEPs are shown in Table 9.1,

To reduce the estimation errors in the growth factors and to eventually allow the estimation
of design rainfalls for durations other than those considered here (see the next section for
explanation), growth factors for 2 and 3 days were converted to 1-day growth factors using
the ratios (regression coefficients) in Table 9.1. The 1-day growth factors obtained from 2
and 3-day growth factors and the original 1-day growth factors were then averaged to obtain
a representative 1-day growth factor at each site. -
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Relationship between growth factors, duration and AEP

The values in Table 9.1 indicate a small but systematic reduction of the growth factors with
both increasing duration and reducing AEP. However, so far no satisfactory mathematical
relationship has been found to explain this variation in growth factors. The ratios in the table

have therefore been used directly.
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Table 9.1 Regression coefficients for growth factors

AEP 2 day vs 1 day* . 3 day vs 1 day*
11n 50 0.985 (0.784) 0.976 (0.669)
1in 100 0.978 (0.780) 0.968 (0.672)
1in 200 0.971 (0.77D) 0.959 (0.674)
1 in 500 0.960 (0.744) 0.947 (0.681)
1 in 1000 0.952 (0.704) 0.938 (0.685)
1 in 2000 0.943  (0.689) 0.928 (0.630)

* the values 1n parentheses are coefficients of determination for the fitted regression lines

9.1.2 Estimation of Index Variable for Regionalisation

The spatial variability of the index variable (mean annual maximum value) is significantly
higher than that of the growth factors. Thus a relatively uniform coverage of rainfall stations
over the whole region is desirable to allow accurate estimation of the index variable. From
Figure 4.6 in Chapter 4, it is clear that stations with 60 or more years of annual maxima do
not cover the alpine area where the index variable is expected to be very high because of the
strong correlation between storm rainfall and elevation. Thus the mean maxima for stations
which have 25 or more years of annual maxima (Data Set III) were used for the
regionalisation.

The 1, 2 and 3 day mean annual maxima were converted to 24, 48 and 72 hour unrestricted
duration rainfalls using factors of 1.16, 1.11, 1.07. respectively. The derivation of these
factors is described in Appendix C.

High correlations between 24, 48 and 72 hour mean annual maxima have indicated that 48
and 72 hour mean annual maxima can be estimated from the 24 hour maxima. The following
investigation was carried out to establish the relationship between the mean annual maxima

for different durations.

Figures 9.3 (a) and (b) show the relationship between 48 and 24 hour mean annual maxima
and 72 and 24 hour mean annual maxima respectively. The linear regression lines were
forced through a common point (21.5, 21.5) so that a relationship between the slope of the
line (R) and the rainfall duration (D) could be derived. This relationship is expressed by the
following equation which is considered applicable for durations in the range from 12 to 72

hours:

R=-2.(2.385-1.00310g D)
24 9.1
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As for the growth factors, the representative 24-hour mean maxima for regionalisation were

obtained by averaging for each site the 24-hour mean maximum, and the 48 and 72 hour

mean maxima which were first converted to 24 hour equivalents using the fitted regression
equations.

Uncertainty in index variable estimates

As stated previously, the index variable (the mean annual maximum rainfall) is much more
spatially variable than the growth factors. Although the variation of the index variable is
determined from a larger data set (Data Set II with nearly 1400 stations), there is a
considerable degree of uncertainty in the estimation of this variable for ungauged sites.

This problem is common not‘only to all index methods of regional frequency estimation but

_ to regional estimation methods in general. While this uhcertajnty has not been investigated in
detail, the results presented in the next section give an indication of the order of magnitde of
spatial variation, and likely errors in estimates for ungauged sites. In assessing this
uncertainty, it should be kept in mind that in most applications the interest is on average
values of design rainfalls for relatively large catchments. These average values are less
sensitive 1o errors in interpolation between rainfall stations than the point estimates.

It is possible that the use of the median of the annual rainfall maxima as the index variable,
instead of the mean, might lead to a small reduction in the sampling uncertainty of the index
variable at gauged sites. However, any such improvement would be small, compared to the
uncertainties involved in spatial interpolation for ungauged sites.
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9.2 REGIONALISATION OF DESIGN RAINFALLS

The regionalisation of design rainfall values involves transfer of information from gauged to
ungauged sites. This can be done using either a relationship between design rainfall values
and measurable catchment characteristics or a geostaﬁsticél mapping method. The latter
approach is used in this study.

The following sections describe use of a spatial interpolation method to regionalise the
design rainfall estimates for Victoria.

9.2.1 Spatial Interpolation Methods

The geostatistical methods analyse the spatial structure of random variables and perform
interpolations. They assume a continuous surface; an assumption which is likely to be
satisfied for design rainfall depths. Two popular spatial interpolation methods are kriging
and Laplacian or thin plate smoothing splines. Kriging depends critically on an assumption
that the spatial covariance function is stationary with respect to space, whereas thin plate
smoothing splines require the estimation of a smoothing parameter that determines an optimal
balance between fidelity to the data and smoothness of the fitted function which can be
automatically calculated (Hutchinson, 1990). ‘

Stewart et al. (1995) used a kriging method to map median at-sitt maximum rainfall.
Hutchinson et al. (1984) successfully applied the thin plate smoothing splines methed to the
spatial interpolation of monthly rainfall. In this study, the thin plate smoothing splines
method was used to regionalise the design rainfall estimates. '

9.2.2 Correlation Between Design Values and Elevation

Rainfall amounts are generally influenced by elevation, along with other factors such as
distance from coast. Figure 9.4 (a) shows a scatter plot of mean 24-hour maximum rainfall
and elevation for stations shown in Figure 9.4 (b). It is evident from this figure that the mean
1-day maximum rainfalls are positively correlated with elevation. However, the relationship
shown in this figure is not as strong as expected because of the influence of other factors
affecting rainfall (eg. closeness to ocean, rain shadow effects).

Figure 9.5(a) shows a much better relationship between 24-hour mean annual maxima and
elevation for stations shown in Figure 9.5(b). These stations were selected -such that the
influence of the ocean is similar and rain shadow effects are minimal. The growth factors
apf)ear to be negatively correlated, as shown in Figures 9.6 (a), (b), (¢) and (d)for the 1 in
50, 1 in 100, 1 in 500 and 1 in 2000 AEP 24-hour rainfalls respectively. The negative
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correlation seems to increase with reducing exceedance probability. These correlations were
taken into account in thin plate spline fitting by incorporating elevation as the third
independent variable, in addition to latitude and longitude.
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9.2.3 Spatial Interpolation of Design Values Using ANUSPLIN

ANUSPLIN, a program suite developed by Hutchinson (1996), was used to map
representative values of the index variable (mean annual maximum for 24-hour rainfall) and
representative values of the design growth factors for the AEPs of 1 in 50, 1 in 100, 1 in
200, 1 in 500, 1 in 1000 and 1 in 2000 over the state of Victoria

The following steps are involved in the fitting of these surfaces:
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i) prepare a file of the dependent data points (design rainfall characteristics) to be
fitted, together with the corresponding latitudes and longitudes plus, if appropriate,

an additional independent variable (in this case the elevations of the focal point
stations);

(ii) use the SELNOT program to select a subset of data points (knots) to be used in the

fitting of the surface;

(1i1) run the spline fitting program SPLINBB and optimise the results by:
- varying the number of knots,

- varying the degree of smoothing (the order of derivatives being
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considered),
- including additional data points with large residuals as knots;

The appropriateness of the fitted surfaces can be assessed by a range of error statistics. Apart
from a check of the remaining degrees of freedom, to ensure that the surface is not
overfitied, the assessment is mainly based on the magnitude of the average residuals and the
largest residuals.

In the case of the index variable, the root mean square residual was 2.3 mm or about 4% of
the mean value, with the largest residual from 1491 values being 25 mm, or about 27% of
the data value at that location. For the growth factors, the root mean square residual was in
the order of 0.03, or about 1% of the mean value, with the largest residual being about 5%
of the data value. ‘

These error statistics and spot checks for selected areas indicate that the fitted surfaces
provide a reliable basis for estimating design rainfalls at ungauged sites.

Ttis of interest to note that the performance of the ANUSPLIN method in preparing a map of
mean annual precipitation for a mountainous area in Montana (USA) has recently been
assessed on the basis of a comparison with hand-drawn precipitation maps (Custer et al.,
1996). The study concluded that overall the maps produced by the two methods are similar,
with some systematic differences in areas where there are few input data points.

9.2.4 Estimation of Complete Rainfall Frequency Curve for a Catchment

The steps in estimating catchment average values of point rainfalls for the six selected AEPs

are;
1) determine catchment average values of the 24h duration design values for:
- the index variable (mean annual maximum rainfall depth)
- the six growth factors for the selected AEPs
by averaging the computed spline surface values for all the grid points that fall
within the catchment boundary;
(1) apply the appropriate ratios to convert the 24h values of the index variable and the

growth factors to the corresponding values for durations of 48h and 72h;

(iii) multiply the index values by the growth factors to obtain rainfall quantile estimates
for the three basic durations and six AEPs;

(iv) Determine rainfall quantiles for other durations D in the range from 12h to 72h by
first converting the rainfall depths (mm) into rainfall intensities I(D) (mm/h) and
then fitting a linear regression of In{I(D}] vs In[D].
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These point rainfall estimates are then converted into areal rainfall estimates for the catchment
using the appropriate areal reduction factors from Siriwardena and Weinmann (1996).

An interpolation procedure developed by Weinmann and Siriwardena (1997) is finally used
to determine areal rainfall estimates for the intermediate range between the AEP of 1 in 2000

and the AEP assigned to the PMP (usually 1 in 10°, based on Pearce, 1994).

A complete summary of all the steps in the application of the CRC-FORGE method is given
in Appendix D.

9.3 COMPARISON OF CRC-FORGE ESTIMATES AND GSAM
PMP ESTIMATES FOR SELECTED CATCHMENTS

As discussed in Chapter 8, the effect of the basic assumptions in the CRC-FORGE method
and the larger uncertainties in design rainfall estimates for low AEPs led to the adoption of an
AEP of 1 in 2000 as the recommended limit for its application. However, as design rainfall
estimates in the intermediate AEP range, between 1 in 2000 and the AEP assigned to the
PMP, are to be established by interpolation, it is of interest to check how consistent the
extrapolated CRC-FORGE estimates are with the PMP estimates.

For this purpose, the 24-hour growth factors for an AEP of 1 in 10° were also established as
catchment average values for the five benchmarking study catchments described in Section
4.6. The corresponding point rainfall quantiles were determined by multiplying the growth
factors by the average index value for the catchment These point rainfall estimates were then

_converted to areal design rainfall values for the catchment by multiplication with the
appropriate areal reduction factor (ARF) from Siriwardena and Weinmann (1996). The ARF
values for the lowest AEP (1 in 2000) were used for this purpose. Table 9.2 shows the
comparison of extrapolated CRC-FORGE estimates with the PMP values.

Table 9.2 Comparison of Extrapolated CRC-FORGE Values with PMPs
(24-hour duration)

Reservoir/ Catchm, PMP CRCFORCE _ARE CRC-FORGE  Dift.
Dam Site Area Areal (Extrapol.) (Extrapol.} (%)
(km?) Estimate Point Est. Areal Est.
(mm) (mm) (mmy)
Lake Bellfield 100 610 538 0.91 490 -20
Lake Buffalo 1145 760 723 0.81 590 -22
Dartmouth Dam 3564 520 592 0.75 450 -13
Rosslynne Res. 90 880 488 0.91 450 -49
Thomson Res. 487 850 720 0.85 610 -28
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The results indicate that the extrapolated values are lower than but generally consistent with
the PMP values, allowing for the fact that the two estimates are based on very different
assumptions and different data sets. For this comparison, it should also be kept in mind that
the AEP assigned to the PMP is a notional value, associated with the application of a
particular methodology to a given data set, rather than a direct probability estimate for the
PMP rainfatl depth (Pearce, 1994).

The consistency of the CRC-FORGE estimates with the PMP estimates was further
confirmed by the fact that in the benchmarking studies conducted for the five dam sites, the
application of the interpolation method by Weinmann and Siriwardena (1997) resulted in a
smooth frequency curve between the AEP 1 in 2000 design rainfall estimate and the PMP
estimate. '

9.4 CONCLUSION

This chapter has described the regionalisation of the CRC-FORGE design rainfall estimates
using a geostatistical method. The ANUSPLIN package was used to spatially interpolate the
index variable (mean annual maximum rainfall) and the growth factors for any site in

Victoria,

When applied to five dam catchments in Victoria, ranging in size from about 100 to more
than 3000 km?, the method produced extrapolated results that are somewhat lower than but
generally consistent with PMP estimates.
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10. CONCLUSION

This chapter provides a summary of the work performed, the conclusions drawn from this

study, and recommendations for future work.

10.1 SUMMARY

This report described the estimation of rainfall frequency curves using the CRC-FORGE
method. The main objective was to derive design rainfalls of durations 1, 2 and 3 days up to
an annual exceedance probability of 1 in 2000 for Victoria.

Annual maximum rainfall data for stations in Victoria and neighbouring regions were
extracted from daily rainfall records provided by the Bureau of Meteorology and were
checked for any recording and processing errors. For the development and application of the
CRC-FORGE method, three data sets were used: (i) stations with 100 or more years of
annual maximum rainfalls, (ii) stations with 60 or more years of annual maximum rainfalls

and (iii) stations with 25 or more years of annual maximum rainfalls.

Although the FORGE concept is a non-parametric, the estimated plotting positions of
extreme rainfall data points are dependent on the assumed distribution for annual maxima.
Using the L-moment ratio diagram and the probability plot correlation coefficient techniques,
the GEV distribution was identified as the most appropriate distribution of the annual
maximum rainfalls for the Victorian region (Chapter 5). Based on results from other studies,
the rainfall extremes for the Victorian and neighbouring regions were deemed to be
homogeneous.

The spatial dependence in annual maximum rainfall data reduces the net information available
in regional frequency analysis. This effect is normally measured by the effective number of
independent stations (Ng) in a raingauge network. A model for a constant N, (CRC Constant
Ne model) based on the average correlation coefficient in the network was developed. This

model was found to perform betier than the Dales and Reed (1989) spatial dependence model
(Dales and Reed Constant Ne model) used in the IH-FORGE method. A model for variable

N, was also developed based on an investigation of generated data sets (Chapter 6).

Using generated data, the IH-FORGE method was shown to overestimate extreme rainfalls
for spatially correlated data. From the validation using synthetic data, the following
modifications were made to the IH-FORGE method (Chapter 7):
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)] use of a variable N, model instead of a constant N, model to estimate the plotting
. positions of FORGE data points,

(ii) inclusion of focal point-data together with FORGE data points,
(iii) screening of outliers among the FORGE data points, and

@iv) fitting of a GEV distribution by a least squares method rather than an eye-ball fit
of a non-parametric distribution line.

The uncertainties in the CRC-FORGE method were estimated using a Monte-Carlo
simulation method. The main sources of errors in the modified estimation were assumed to
be parameter estimation errors in the Variable Ng model and in the fitting of the growth
curve. It was assumed that the basic assumptions on distribution and homogeneity of annual
rainfall maxima were closely satisfied, and that the adopted form of the Variable N, model
was appropriate.

The index variable (mean annual maxima) and design growth factors estimated for the
selected focal stations were regionalised using a geostatistical spatial interpolation technique
based on a thin plate spline smoothing method. In this method, elevations of stations were
treated as an independent variable along with Iatitudes and longitudes of the stations. The
results of this regional smoothing now allow the estimation of extreme rainfalls for any site
in Victoria for the range of durations from 12 to 72 hours and for AEPs from 1 in 50 to 1 in
2000.

Appendix D gives a summary of all the steps in the application of the CRC-FORGE
methodology to estimate design values of extreme catchment rainfalls.

10.2 CONCLUSION

The conclusions drawn from this study are:

(i) the CRC-FORGE method provides consistent extreme point rainfall estimates for
Victoria to an annual exceedance probability (AEP)of 1 in 2000, and establishes
a better basis for interpolation of design rainfalls in the range between that event
and the probable maximum precipitation;

(i) the CRC-FORGE rainfall estimates derived for rain gauge sites can be
regionalised to allow estimation of extreme design rainfalls for any site in

Victoria, with some loss of accuracy in the sp-arsely gauged mountainous
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(i)

(v)

)

(v)

(vii)

regions,;

the CRC-FORGE methodology and software developed in this project lend
themselves for application to design rainfall estimation in other regions of
Australia;

the IH-FORGE method, which assumes no variation of the effective number of
independent stations with rainfall magnitude, tends to overestimate very extreme
rainfalls;

the functional form of the model used in the CRC-Forge method to estimate the
variable effective number of independent stations produces satisfactory results
when fitted to Victorian data; ‘

the Generalised Extreme Value (GEV) distribution satisfactorily describes the
annual maximum rainfall data for the Victorian region; and

the Victorian annual maximum rainfall data can be assumed to be homogeneous
for the purpose of estimating design rainfalls in the extreme range.

10.3 SUGGESTIONS FOR FUTURE WORK

The following recommendations are made to further improve the CRC-FORGE method

estimates:

(1)

(i)

(i)

(iv)

homogeneity tests for very extreme rainfalls should be developed, as the CRC-
FORGE method considers only the highest observations in a region, and the
available tests mainly check the homogeneity in relation to higher exceedance
probabilities;

the appropriate form of the Variable Ne model to estimate the effective number of
independent stations should be identified based on theoretical investigations;

the influence of the constant inter-station correlation assumption in the Monte
Carlo simulations, used to identify the appropriate functional form of the
Variable N model, should be examined; .

the sensitivity of the CRC-FORGE estimates to the number of selected highest
rainfalls_in each FORGE step should be investigated;

98



)

(vi)

further data generation studies should be undertaken to determine the effects on
the estimated design rainfall values of any violations of the basic assumptions on
homogeneity and distribution; and

the spatial variation of the index variable (mean maximum annual rainfall) should
be further investigated to identify options for more reliable extrapolation into
sparsely gauged areas, including the use of data from short record stations and
the effects of non-concurrent records.
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APPENDIX B IH-FORGE GROWTH CURVES
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Figure B.1 IH-FORGE growth curves for 2-day rainfall maxima at selected Victorian
stations (continued overleaf)
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Figure B.2 (continued overleaf) IH-FORGE growth curves for 3-day rainfall maxima at

selected Victorian stations

109




Average recurrence interval

§0 40 30 20
Annual exceedance probability (%)

10 6 2 105 o1

(a) Station: 079042

Average recurrence interval

601

6.0q1

3 4 B q
20 Rt B 10 20 60 1, 1 1w
“F +1000.
F ® Focal station L 00,
E L 800
L r 700,
gm t ® I 800.
" l-- _mo'
gt o (00 km
g & 4 — L a0,
8 " F » — ARRG7 estimates i
§ 8§ ¢ - Focal atation data W .
‘E’ P St 90% conf. limit g
-
o
T 7 L z00.
0
rES
o]
=
i :
85 z 100.
7] 4 L B0O.
B b 80,
8
1 L 70,
: L e
1. <

a0001

{c) Station: 083017

Annual exceedence probability {%Z)

2 - 3 4 ;] ]
a0 2.5 102 s, 1 b i
: ® Fooul station
- 3 +-1000.
32} L
‘20,4 & So.
e d r 800.
h L @ 100 k| F 700.
g s+ — ]
3 7.4 - % 800,
B | » — ARRBY estimates o
'R &% « — Focal station data g T s
5 i~ - 90% conf. lmit Z
Est L 400,
S 44
] [
[
Tad
] 3
E-] o
4
9, f
= Z.T
geq
4
n [
9 _N=766] 90
1 et i i s
50 40 30 20 10 s 2 105 o1 0.01 4.001 0.0001

2~day maximum rainfall (mm)

Z—day maximum rainfall (mm)-

Averags recurrence interval

(d) Station:

Annual exceedance probability (%)

088015

3 4 & @
20 Bin B 10 20 &3P, 10, 10 10 18
® Tooul rtation }2000.
s 1
F ]
3
. ‘Bt .
ge1 0 100 km| _!m
- BT —
I P 600
g £ e — ARRB7 estimates L »00.
‘H 8+ » — Focal station data =
g &_g-—- — 90% conf. limit 800
- F b 800
s .1
h-] 4-7
[ F L 400.
~ i
L : 300
T Ot
E - 1
g z4 2
2 F 3 | z00.
W 4
5
8
7
8
[
1.4
GO 40 30 20 10 6 2 108 ot 001 0.001 0.0001
Annuasl exceedance probability (%)
(b) station: (085091
Average recurrence interval
4
B . B 1 3 & L it st
: ® Foonl station L1000,
F + 900
[ L 800.
- L 700.
2
E 10. 4 - 800.
[ o 100w  6es.
8.1 Ity i
g1 A o
g E = — ARRB7 estimates x
‘H & « - Foecal atation data e
g sl 80% conf. limit 2" 1 s00.
S '
S 44 ]
a F - 200.
T ad
E
=
-§ 3 1
gz 2
# ¢t g b 100,
[ p o
a 80.
7
. 70
g L 50
1.
G040 30 20 10 & 2 106 O1 0Ol 90.001 0.0001

2—-day maximum rainfall {mm)

2-day maximum raintall {ram})

Figure B.3 CRC-FORGE growth curves with 90% confidence limits for 2-day rainfall
maxima at selected Victorian stations (continued overleaf)
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Figure B.3 (continued) CRC-FORGE growth curves with 90% confidence limits for 2-day
rainfall maxima at selected Victorian stations
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Figure B.4 (continued) CRC-FORGE growth curves with 90% confidence limits for 3-day
rainfall maxima at selected Victorian stations
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APPENDIX C - CONVERSION OF RAINFALL DATA FOR
FIXED PERIODS TO RAINFALLS FOR
UNRESTRICTED DURATIONS

C.1 Introduction

In flood design, the interest is on design rainfalis for time periods of various durations,
irrespective of the starting time of those periods. However, daily rainfall observations are
available for fixed periods of time, usually starting at 9.00 am the previous day and ending at
9.00 am on the day against which the rainfall is recorded. Design rainfall estimates based on
the analysis of fixed period daily rainfalls underestimate the amount of rainfall in an
unrestricted period of the same duration and thus require correction.

The correction factors used in the analysis of rainfall data to obtain the design values for
Chapter 2 of Australian Rainfall and Runoff (IEAust, 1987) are referenced to Miller et al.
(1973), but these factors probably go back to Hershfield and Wilson (1958) and Weiss
(1964). A recent comprehensive investigation by the UK Institute of Hydrology (Dwyer and
Reed, 1995) found correction factors that are slighdy higher than the ones previously
recommended. The derivation of these new factors for daily rainfall data is summarised
below. )

C.2 Correction factors for daily rainfall

From the detailed analysis of rainfall records at six stations (including Melbourne, Sydney
and Brisbane) Dwyer and Reed (1995) recommended a factor p* in the range of 1.15t0 1.17
to convert calendar day maxima to true (24h) maxima. For the Victorian rainfall regime,
which includes a mixture of events from thunderstorms and frontal systcins, a value of p* =

1.16 has been adopted.

For the conversion of cumulative rainfall totals over D days, the factor p* needs to be

divided by p(D). This is the ratio between a ‘f';xed maximum’, computed from fixed
intervals of length D days, to the ‘sliding maximum’, computed from daily data over D sub-
intervals. Dwyer and Reed (1995) derived the following formula for the computation of p(D)

with D measured in days:

p(D) = 1+ 0.16[1-exp{-0.36(D-1)}]

The resulting factors oD) = p*/p(D) are given in Table C.1 These factors were used in

Chapter 9 to convert I-day rainfalls to 24-hour values, 2;day values to 48-hour values, etc.
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Table C.1 Correction Factors for Unrestricted Rainfall (Based on Eqs. 8.1 and 8.3 in
Dwyer and Reed, 1995)

Duration p(D) a(D)
(days) (hours)

1 73 T.000 1160
2 48 1.048 1.106
3 72 1.082 1.072
4 96 1.106 1.049
5 120 1.122 1.034
6 144 1.134 1.023
7 168 1.142 1.016
8 192 1.147 1.011
9 216 1.151 1.008
10 240 1.154 1.005
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APPENDIX D - STEP-BY—STEP PROCEDURE FOR CRC-

- FORGE METHOD

D.1 Preparatory Steps

D.2

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

2.4

2.5

2.6

Prepare a data base of daily rainfall data for all stations in the region(s), using
a common format and data structure.

For each station whose length of record exceeds a nominated minimum record
length, extract annual maximum rainfall depths for the durations of interest
(see Section 4.2).

Check the annual maximum rainfall series for data errors, inconsistencies and
non-stationarities (see Sections 4.4 and 4.5).

Standardise the annual maximum rainfall data (divide by index variable) and
adjust the data from restricted to unrestricted durations (see Appendix C).

Test for homogeneity of the rainfall region(s) and identify the appropriate
probability distribution(s), as described in Chapter 5.

Computaticn of Growth Factors at'.'i:'Gauged Site

Define a subset of ramfall gauge sites with sufficient record length to give
conﬁdent at-site estimates of ramfall frequency "

Select a site from this subset as the focal pomt for a CRC-FORGE analy31s

Form a sub-region dcﬁned by the focal point station and the two rainfall
stations closest to it (total of 3 stations), then pool the standardised annual

maximum rainfall data from this sub-region,

Select the six highest independent values from the pooled data and determine
their plotting positions, using the Cunnane plotting position formula with the
value of N, determined from the CRC Variable N, model.

Plot these six FORGE data points on probability paper at their appropriate
plotting positions.

Double the total number of stations included in the next sub-region around the
focal point and repeat Steps 2.3 to 2.5 until all the stations in the
homogeneous region are included in the pooled data set.
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D.3

D.4

2.7  Screen the plotted FORGE data points for outliers (using the procedure
described in Section 7.1.2).

2.8  Plot focal station data points at their single-site plotting positions (include
only the largest n, data points, where n; is the total number of FORGE data
- points after elimination of outliers).

2.9  Fit a GEV distribution to all the data points, using the least squares fitting
procedure described in Section 8.3.2 (or use an appropriate method to fit the
alternative distribution found in Step 1.5).

2.10 Compute growth factors for the nominated AEP values.

.Computation of Point Rainfall Quantiles at Gauged Sites

3.1 Compute rainfall quantiles for the specified gauge site and nominated AEP
values by multiplying the index value (mean annual maximum rainfall) for
that site by the growth factors computed in Step 2.9.

Estimation of Point Rainfall Quantiles for Ungauged Sites

The following steps can be undertaken separately for each rainfall duration or in a
combined fashion, allowing for the relationship between the index values and growth
factors for the different durations.

4.1  Select all rainfall stations in the region with a sufficient record length to allow
confident estimation of the index variable, and compute the value of the index
variable for each site.

4.2  Prepare a map showing the value of the index variable at each selected site.

4.3 Use a manual or computer-based spatial interpolation procedure to draw
isolines of the index variable covering the whole region.

4.4  Compute point rainfall growth factors for each site selected in Step 2.1 by
repeating Steps 2.2 to 2.10 with the selected site as the focal point.

4.5  Prepare for each nominated AEP a map showing the growth factor values at
 the focal point locations.

4.6  Use a manual or computer-based spatial interpolation procedure to draw
isolines of the growth factors covering the whole region.
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4.7 Compute point rainfall quantile estimates for any site within the region by
multiplying the interpolated growth factor values by the corresponding value
of the index variable.
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