

## A critical review of paired catchment studies with reference to seasonal flows and climatic variability

Alice Best, Lu Zhang, Tom McMahon, Andrew Western, Rob Vertessy



### A critical review of paired catchment studies with reference to seasonal flows and climatic variability

Alice Best, Lu Zhang, Tom McMahon, Andrew Western, Rob Vertessy Authors: Alice Best<sup>1,2,3</sup>, Lu Zhang<sup>1,3</sup>, Tom McMahon<sup>1,2</sup>, Andrew Western<sup>1,2</sup>, Rob Vertessy<sup>1,3</sup>

- 1. Cooperative Research Centre for Catchment Hydrology.
- 2. Department of Civil and Environmental Engineering,
- University of Melbourne.
- 3. CSIRO Land and Water, Canberra.

CSIRO Land and Water Technical Report 25/03 CRC for Catchment Hydrology Technical Report 03/4 MDBC Publication 11/03

Published by: Murray-Darling Basin Commission

Level 5, 15 Moore Street Canberra ACT 2600 Telephone: (02) 6279 0100 from overseas + 61 2 6279 0100

Facsimile: (02) 6248 8053 from overseas + 61 2 6248 8053 Email: info@mdbc.gov.au Internet: http://www.mdbc.gov.au

ISBN: 1 876 830 57 3

Cover photo: Arthur Mostead Margin photo: Mal Brown

© 2003, Murray-Darling Basin Commission and CSIRO

This work is copyright. Photographs, cover artwork and logos are not to be reproduced, copied or stored by any process without the written permission of the copyright holders or owners. All commercial rights are reserved and no part of this publication covered by copyright may be reproduced, copied or stored in any form or by any means for the purpose of acquiring profit or generating monies through commercially exploiting (including but not limited to sales) any part of or the whole of this publication except with the written permission of the copyright holders.

However, the copyright holders permit any person to reproduce or copy the text and other graphics in this publication or any part of it for the purposes of research, scientific advancement, academic discussion, record-keeping, free distribution, educational use or for any other public use or benefit provided that any such reproduction or copy (in part or in whole) acknowledges the permission of the copyright holders and its source ('A critical review of paired catchment studies with reference to seasonal flows and climatic variability') is clearly acknowledged.

To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.

The contents of this publication do not purport to represent the position of Murray-Darling Basin Commission or CSIRO in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources.









## Acknowledgements

This work was funded by the Murray-Darling Basin Commission through SI&E Grant Number D2013: "Integrated Assessment of the Effects of Land use Changes on Water Yield and Salt Loads", and the Cooperative Research Centre for Catchment Hydrology.

State Forests—NSW, CSIR South Africa and Manaaki Landcare Research kindly provided us with paired catchment data from Redhill, South Africa and New Zealand respectively. We thank Sandra Roberts and Peter Richardson from their helpful comments on this review.

The senior author was supported by a University of Melbourne Research Scholarship, and the CRC for Catchment Hydrology.

## **Executive summary**

Since European settlement in Australia, large-scale clearing of native vegetation for agriculture has caused alterations in the hydrologic regime of many Australian catchments. The Forest Plantations 2020 Vision states that by 2020 the area of tree plantations within Australia will treble. If implemented, this will impact on water yield at both local and regional scales. Paired catchment studies have been widely used as a means of determining the magnitude of water yield changes resulting from changes in vegetation and they provide a possible means of predicting the likely impacts of broad-scale vegetation changes on water yield.

This review focuses on the use of paired catchment studies as a means for

determining long-term changes in water yield as a result large scale changes in vegetation. Paired catchment studies can be divided into four broad categories: afforestation experiments, deforestation experiments, regrowth experiments and forest conversion experiments. The methods used to assess the magnitude of annual and seasonal changes in water yield have been reviewed and implications for applying paired catchments results to large catchments, where the land use is likely to consist of a mosaic of vegetation at different stages of development, have been identified. Current knowledge gaps in relation to the impacts of broad scale vegetation changes on flow regime and seasonal flows are highlighted and possible methods of addressing these gaps are suggested.

## Table of contents

| Acknowledgements                                            | i           |
|-------------------------------------------------------------|-------------|
| Executive summary                                           | ii          |
| 1. Introduction                                             | 1           |
| 2. Paired catchments                                        | 3           |
| 2.1 Methods used to determine annual changes in wa          | ter yield 3 |
| 2.2 Methods for determining seasonal changes in wate        | er yield 3  |
| 2.3 Types of paired catchment experiments                   | 4           |
| 3. Hydrological processes in relation to vegetation type    | 5           |
| 3.1 Precipitation                                           | 5           |
| 3.2 Evapotranspiration                                      | 5           |
| 3.2.1 Transpiration                                         | 6           |
| 3.2.2 Interception                                          | 6           |
| 3.3 Infiltration                                            | 6           |
| 3.4 Overland flow                                           | 6           |
| 3.5 Deep Drainage, base flow and recharge                   | 7           |
| 3.6 Soil water storage                                      | 7           |
| 3.7 Summary of processes                                    | 7           |
| 4. Changes in water yield due to changes in vegetation type | e 8         |
| 4.1 Generalisations based on paired catchment data          | 8           |
| 4.2 Mean annual and annual water yield                      | 11          |
| 4.3 Annual flow regime                                      | 15          |
| 4.3.1 Flow duration curves                                  | 15          |
| 4.3.2 High and low flows                                    | 16          |
| 4.3.3 Impact of vegetation changes on an                    | nual FDC,   |
| high and low flows                                          | 16          |
| 4.4 Seasonal water yield and flow regime                    | 18          |
| 5. Summary of limitation of paired catchments studies       | 22          |
| 5.1 Limitations in reported literature                      | 22          |
| 5.2 Application to large catchments                         | 22          |
| 5.2.1 Spatial issues                                        | 22          |
| 5.2.2 Climatic variability                                  | 23          |
| 6. Summary and conclusions                                  | 24          |
| Reference list                                              | 25          |
| Appendix A                                                  | 31          |

A CRITICAL REVIEW OF PAIRED CATCHMENT STUDIES WITH REFERENCE TO SEASONAL FLOWS AND CLIMATIC VARIABILITY



## 1. Introduction

Since European settlement in Australia, large-scale clearing of native vegetation for agriculture has caused alterations in the hydrologic regime of many Australian catchments. In southern Australia salinity is recognised as one of the most serious environmental degradation issues, affecting both soil and water quality. The massive clearing of native vegetation and its replacement by shallow-rooted annual crops and pastures has caused salinity, through the reductions in evapotranspiration and increases in groundwater recharge. The decrease in evapotranspiration is also likely to lead to an increase in streamflow, which not only increases water supply, but also helps to dilute salt inflows (Zhang et al. 1999). Plantations for Australia: The 2020 Vision (DPIE 1997) states that by 2020 the area of tree plantations within Australia will treble. If implemented, this will impact on water yield at both local and regional scales. The response of catchments to such a land use change is likely to vary in both space and time and in order to develop sustainable land management options, it is necessary to predict the effects of such afforestation on water yield and it seasonal variability.

Paired catchment studies have been widely used as a means of determining the magnitude of water yield changes as a result of changes in vegetation. A number of review articles have summarised the results of these studies. Bosch and Hewlett (1982) reviewed catchment experiments to determine the effect of vegetation change on water yield. They updated an earlier review by Hibbert (1967) in which 39 experimental catchments, predominantly in the USA, were analysed and the following generalisation made:

- 1. reduction in forest cover increases water yield
- establishment of forest cover on sparsely vegetated land decreases water yield
- response to treatment is highly variable and, for the most part unpredictable.

Bosch and Hewlett (1982) added an additional 55 catchments to those reviewed by Hibbert (1967). Two types of experiments were reviewed-paired catchment studies and time-trend studies-that provide circumstantial evidence of the influence of catchment management on water yield. While Bosch and Hewlett (1982) supported the first two conclusions made by Hibbert, their results indicated that to a certain degree the influence of afforestation and deforestation could be predicted. Since 1982 a number of additional paired catchment studies have been reported in the literature. The results of some of these studies have been summarised in the subsequent reviews of Hornmeck et al. (1993), Stednick (1996) and Sahin and Hall (1996). Vertessy (1999, 2000) reviewed the literature available on paired catchment studies with respect to forestry and streamflow. These two reviews provide a comprehensive summary of the present understanding of land use change impacts on water yield, with particular reference to Australian conditions. While the impact of afforestation and deforestation on mean annual water yield is well understood, there is little reported in the literature on seasonal water yield and what has been reported is mainly of a descriptive nature.

While results from the many paired catchment studies demonstrates that they can be used to assess the impact of land use change on water yield at the local scale, doubts exist about the application of paired catchment results to large catchment or a regional scale. On a regional scale, land use changes are likely to be mosaics with vegetation at different stages of development. Therefore uncertainty exists about the application of small scale experimental results to large catchments (Wilk et al. 2001). An alternative method that could be used to assess the impacts of vegetation changes on large catchments is the use of time-trend studies. However this requires the separation of the impact of vegetation changes from climatic variability. Munday et al. (2001) used a general additive model (GAM) to assess to impact of a

mosaic of vegetation types (pine plantation, eucalypt forests and pasture) on water yield in the Adjungbilly catchment in south eastern Australia. This model simulated the annual average water yield changes in response to the natural ageing of forests and to user defined logging regimes. While a time-trend study with a good vegetation history was used in this study, paired catchment experiments were used to gain an understanding of the impact of pine plantations and the stand age of native vegetation on water yield.

The purpose of this report is to:

- review the paired catchments methods used to assess the magnitude of annual and seasonal changes in water yield that can be attributed to alterations in vegetation type
- investigate the possible methods for separating the impacts of climatic variability on water yield form the effects of alterations in vegetation types
- highlight the knowledge gaps in the literature in relation to the impacts of vegetation type on seasonal water yield and flow regime
- suggest how generalisation made from paired catchments can be applied to large catchment with a mosaic of vegetation types.

This review includes an additional 56 paired catchments on top on those reviewed by Bosch and Hewlett (1982) bringing the total number of paired catchment experiments reviewed to 150. Details of these experimental catchments can be found in **Appendix A**.

## 2. Paired catchments

Paired catchment studies have been widely used to assess the likely impact of land use change on water yield around the world. Such studies involve the use of two catchments with similar characteristics in terms of slope, aspect, soils, area, precipitation and vegetation located adjacent to each other. Following a calibration period, where both catchments are monitored, one of the catchments is subjected to treatment and the other remains as a control. This allows the climatic variability to be accounted for in the analysis. The change in water yield can then be attributed to changes in vegetation. The paired catchment studies reported in the literature can be divided into four broad categories:

- (i) afforestation experiments;
- (ii) regrowth experiments;
- (iii) deforestation experiments; and
- (iv) forest conversion experiments.

## 2.1 Methods used to determine annual changes in water yield

Various methods have been applied in the analysis of paired catchment data to assess the impacts of vegetation changes on water yield a various time scales. The most commonly used method is to produce a linear regression between the control and the treated catchment for annual data collected during the calibration period (Hornbeck et al. 1993). The regression equation is then used to predict the water yield that would have occurred in the treated catchment if the treatment has not taken place. The difference in the observed and the predicted streamflow is then assumed to be due to land use change as the method provides a control over climatic variability (Bari et al. 1996). While the method of linear regression is most commonly used on annual data it has also been used on the components of streamflow, the quick flow response and baseflow (Bari et al. 1996).


South Africa has a very comprehensive set of paired catchment studies that have been

used to assess the impacts of afforestation on water yield. A significant amount of literature is available on these catchments a number of different methods have been used to assess the impacts of afforestation on water yield at an annual scale. The latest South African work is summarised in Scott et al. (2000) and provides details of all the afforestation experiments undertaken in South Africa. To predict the impacts of afforestation on annual streamflow and the variations on between years due to development of plantations, Scott and Smith (1997) developed an empirical model that predicts the percentage reduction in water yield with time. This work is further discussed in Section 4.

#### 2.2 Methods for determining seasonal changes in water yield

Seasonal or monthly analysis of paired catchments data is less common than annual analysis. As with annual analysis the most commonly used method is to use standard linear regression techniques on monthly data (making no adjustments for the serial correlation) to establish pre-treatment relationships between the control and the treated catchments. Lane and Mackay (2001) adopted this method in their analysis of data in the Tantawangalo Creek catchments in New South Wales as insufficient data was available during the pre-treatment year to use annual data to develop the relationships. Scott and Lesch (1997) also used monthly data in their analysis of the Mokobulaan experimental catchments in South Africa. To adjust for the serial correlation of monthly data both streamflow and rainfall data were included as independent variables in a monthly multiple regression. The rainfall term was considered as part of an antecedent wetness index, which considered the wetness index for the previous month and the rainfall in the present month. The analysis of Scott and Lesch (1997) looked at annual flows as well as wet and dry season flows. Watson et al. (2001) developed an improved





## 2.3 Types of paired catchment experiments

The paired catchment experiments reviewed by Bosch and Hewlett (1982), Whitehead and Robinson (1993), Sahin and Hall (1996) and Stednick (1996) focused mainly on regrowth experiments, where harvesting of forests is undertaken followed by the regrowth of the same vegetation type. While the activities involved in regrowth of vegetation may impact on the short-term water yield, permanent vegetation changes such as afforestation and deforestation are likely to have a much greater long-term impact on streamflow and the associated issues, such as salinity and water resource security.

The paired catchment experiments reviewed in this report can by divided into four broad categories.

 Afforestation experiments—conversion of sparsely vegetated land to forest. Examples of these can be found in South Africa (Scott et al. 2000), New Zealand (McLean 2001), Australia (Hickel 2001) and in the UK (Kirby et al. 1991, Johnson 1995).

- 2. Regrowth experiments—these look at the effects of forest harvesting where regrowth is permitted. Experiments in this category constitute the majority of the paired catchment studies worldwide. They involve the removal of vegetation from a percentage of a catchment followed by regrowth of the same vegetation type (Stednick 1996).
- Deforestation experiments—the clearing of densely vegetated land to grass or pasture. Examples include the Collie catchments in Western Australia (Ruprecht and Schofield 1989, Ruprecht and Schofield 1991a, Ruprecht and Schofield 1991b, Ruprecht et al. 1991, Schofield 1991).
- 4. Forest conversion experiments—the replacement of one forest type with another. This includes the conversion from softwood to hardwood, deciduous to evergreen or pine to eucalypt. Stewarts Creek provides an example of the conversion of native vegetation to pine in Victoria, Australia (Mein et al. 1988, Nandakumar 1993).

Vertessy (1999) highlighted some of the problems with using regrowth experiments for estimating yield increases. Where a forests are permitted to regenerate only the data obtained in the first few years following treatment are used in building relationships between the percentage change in cover and the change in yield. Three problems were highlighted in relation to the use of such data:

- it takes time for a catchment to adjust its run-off behaviour following vegetation change
- soil compaction and disturbance during logging and regeneration burning can temporarily increase overland flow and change the pattern of streamflow
- due to the short data set used to build the linear relationships that are used to predict water yield change, natural variability in the water yield data due to climatic variability may have a strong influence on the results.

The results of various paired catchment experiments are discussed in **Section 4**, following a review of the major hydrological processes in **Section 3**.

# 3. Hydrological processes in relation to vegetation type

The effects of two main vegetation types on components of the water balance are discussed in the following section. The two main vegetation types considered are grass or pasture and forests.

The water balance equation for a given catchment can be written as:

$$P = ET + Q + D + \Delta S \tag{1}$$

where *P* is the precipitation, *ET* is the actual evapotranspiration, *Q* in the streamflow, *D* is the recharge to the ground water and  $\Delta S$  is the change in soil water storage.

The evapotranspiration and streamflow terms in equation (1) can be rewritten as

$$ET = I + T + E \tag{2}$$

where I = interception loss, T = transpiration and E = soil evaporation;

$$Q = OF + BF \tag{3}$$

where OF = overland flow and BF = baseflow

The hydrological processes and water balance components discussed in relation to vegetation types are precipitation, evapotranspiration, interception, transpiration, soil evaporation, infiltration, overland flow, deep drainage, baseflow and recharge.

#### 3.1 Precipitation

Precipitation is the largest term in the water balance equation and varies both temporally and spatially (Zhang et al. 2001). In discussing the impact of vegetation type on precipitation it is important to distinguish between gross precipitation and net precipitation. Gross precipitation is the amount of rainfall (or snow) falling above the vegetation, while net precipitation is the amount of precipitation reaching the ground surface. In most cases gross precipitation can be assumed to be independent of vegetation type (Calder 1998).

Calder (1999) suggests one of the myths associated with forests is that forests increase precipitation. In most cases it is reasonable to assume that vegetation has little or no influence on gross precipitation. However, in some instances there is evidence that forests increase the amount of gross rainfall. It has been suggested that tall trees increase the orographic effect, increasing the amount of gross rainfall. However any increases in gross rainfall are likely to be offset by the increased rate of evapotranspiration of these taller trees, resulting in an overall decrease in water resources. On a continental scale it is thought that vegetation type may well impact on the amount of gross precipitation through land-atmosphere feedbacks (Calder 1996). However, there is no data to show that this effect operates at the catchment scale.

#### 3.2 Evapotranspiration

As described in equation (2) evapotranspiration can be divided into three components: interception, transpiration and soil evaporation. Evapotranspiration is defined as the total process of water transfer into the atmosphere from vegetated land surfaces. The two major components of evapotranspiration (transpiration and interception) are defined and discussed in **Sections 3.2.1 and 3.2.2**. The total amount of evapotranspiration, under different vegetation types is dependent not only on the vegetation type, but also on the soil and climate of the catchment (Calder 1999).

Changes in evapotranspiration due to changes in vegetation can have a significant impact on the water balance. For example when comparing the annual evapotranspiration between forest and grass for catchments with the similar rainfall, Turner (1991), Holmes and Sinclair (1986) and Zhang et al. (1999) found that forests consistently had higher rates of evapotranspiration than grass.

#### 3.2.1 Transpiration

Transpiration is the process by which water in plants is transferred to the atmosphere in the form of vapour (Ward and Elliot 1995). The amount of transpiration differs with different vegetation types and is controlled by the physiological characteristics of the vegetation, with the majority of transpiration occurring through the stomates, the small pores in the leaf epidermis. The combined effect of large leaf area and more extensive root systems of forests compared to grass or pasture results in much greater transpiration rates (Ward and Elliot 1995). This larger transpiration rates of forests compared to pasture is not only due to the increased leaf area, but is also due to the ability of forest to access deeper water stores.

#### 3.2.2 Interception

Interception loss is the amount of gross rainfall intercepted by leaves or litter and evaporated directly back to the atmosphere. Water that is captured on foliage and evaporated does not contribute to streamflow. Interceptions can be divided into two types:

- 1. canopy interception
- 2. litter interception.

The amount of interceptions is largely dependent on the type of vegetation and on the intensity, duration, frequency and form of precipitation (Dingman 1994). Interception is generally proportional to leaf area index (LAI) with forests having a larger LAI then shrubs or grasses. This combined with the greater aerodynamic roughness of forests leads to greater interception loss and reduction in net rainfall under forested conditions (Vertessy 2000).

Using a paired catchment study to determine the impact of replacing native vegetation with pasture on a small catchment in south Western Australia, Ruprecht and Schofield (1989) attributed the initial increase in streamflow (~13% of rainfall) to an decrease in the interception loss as a result of changes in vegetation type. Bari et al. (1996) also observed this response in the March Road catchment in south Western Australia. The difference in interception between forest and grass or pasture impacts on the water balance equation by affecting the evapotranspiration.

Afforestation, deforestation and forest conversion are all likely to alter the water balance through their influence on LAI and interception loss.

#### 3.3 Infiltration

Infiltration is the process by which water arriving at the soil surface (after canopy and litter interception) enters the soil (Dingman 1994). The rate of infiltration is affected by the initial water content and the permeability of the soil. Although the antecedent moisture and permeability are largely determined by rainfall and soil type, vegetation also affects soil moisture levels through transpiration, interception and shading. Soil permeability is also impacted by vegetation through the contribution of organic matter and number of macro and micro-pores that develop around the roots.

The higher transpiration rates of forests results in the initial soil moisture content being considerably lower than under crops or pasture (Ruprecht and Schofield 1989) while the nature of the root structure associated with forests increases the number of macropores and the amount of organic matter content under forested conditions leads to higher rates of infiltration under forests than under grass or pasture (Mapa 1995).

#### 3.4 Overland flow

Overland flow occurs when the soil is saturated either from above (Hortonian over land flow) or from below (saturation overland flow) (Dingman 1994). Greater overland flow is generally observed from pastures then from forests. Ruprecht and Schofield (1989) attributed increases in overland flow in deforested catchments to the larger permanent groundwater discharge areas that resulted as a consequence of vegetation removal and decreased evapotranspiration. It is also possible that increased overland flow occurs for pastures relative to forests because of the changes to the infiltration capacity of the soil. Scott and Lesch (1997) noted that the delayed recovery of streamflow after the clear felling of a plantation catchment in South Africa. They attributed the delayed response to the trees tapping deep soil-water reserves reducing the soil water storage below levels necessary to generate streamflow, indicating that a saturation excess flow mechanism may also operate in this catchment.

## 3.5 Deep drainage, base flow and recharge

Deep drainage is the water that moves downward through the soil profile below the root zone that cannot be used by transpired by plants (Ward and Elliot 1995). Where there is no lateral flow of water between the root zone and the water table, deep drainage is equivalent to the recharge to the ground water table. Where lateral flow occurs between the root zone and the water table a portion of deep drainage may contribute to baseflow. Baseflow can therefore consist of two components: the discharge from the groundwater table; and the lateral flow of deep drainage that becomes streamflow.

Deep drainage is generally greater beneath pastures than forests, as the deeper roots of forests and increased evapotranspiration utilises more water, reducing deep drainage. In an experimental catchment in Coweeta, USA, Burt and Swank (1992) observed that with the conversion of hardwood to grass the amount of low flow increased, particularly baseflow. This has been observed almost universally in paired catchment studies involving deforestation. The lower evapotranspiration rates and shallower root zones of short vegetation compared to forests results in an increase in the deep drainage and baseflow.

#### 3.6 Soil water storage

The last term in the water balance equation is the change in soil water storage. The soil water storage represents the amount of water stored in the soil profile that can either be transpired or that contributes to baseflow. Over long periods it is reasonable to assume that changes in soil water storage are negligible, if no change to vegetation type has occurs (Zhang et al. 2001) the change in soil water storage term in the water balance equation can be ignored. However, on a seasonal basis the changes in soil water storage may be significant.

#### 3.7 Summary of processes

The above discussion highlights the major hydrological processes in relation to vegetation type. The general conclusions that can be drawn are:

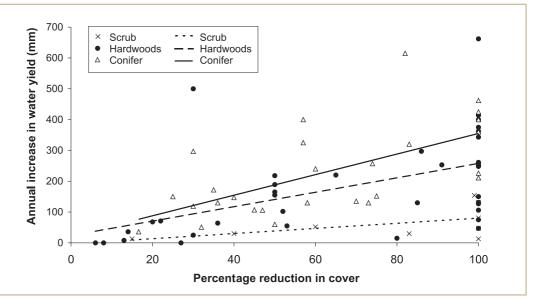
- Alterations to vegetation type on the local and catchment scale are not likely to impact on gross precipitation; however, regional or continental changes to vegetation may alter gross precipitation.
- 2. Interception loss is greater for forest than for grasses or pasture. Under deforestation it is likely that the initial increase in water yield is due to a reduction in interception loss.
- Overland flow or quick flow is less likely to be affected by changes in vegetation cover than baseflow.
- Changes in water yield as a result of changes in vegetation, particularly permanent vegetation changes are likely to be reflected as changes to baseflow. Larger soil moisture stores and groundwater reserves accumulated in response to removal of forest and decreased evapotranspiration cause the observed increase in baseflow.
- Under most climatic conditions, evapotranspiration from forests will be greater than from grasses.



# 4. Changes in water yield due to changes in vegetation type

Water yield changes have been reported at mean annual, annual and monthly temporal scales for paired catchment studies. The majority are reported on an annual basis. The following section summarises the results for previous reviews and uses specific examples from Australia, South Africa and New Zealand to highlight some of the conclusions that can be drawn from paired catchment studies.

## 4.1 Generalisations based on paired catchment data


A number of reviews have been undertaken to draw generalisations from paired catchment studies, particularly in reference to changes in forest cover on water yield. The first of these was by Hibbert (1967). In this review 39 experimental catchments were reviewed and the following conclusions were drawn:

- reduction in forest cover increases water yield
- establishment of forest cover on sparsely vegetated land decreases water yield

• the response to treatment is highly variable and, for the most part, unpredictable.

Bosch and Hewlett (1982) undertook at further review of paired catchments and in reviewing 94 experimental catchments, they concluded:

- 1. reducing forest cover causes as increase in water yield
- 2. increasing forest cover causes a decrease in water yield
- coniferous and eucalypt cover types cause ~40mm change in annual water yield per ten per cent change in forest cover;
- deciduous hardwoods are associated with ~25mm change in annual water yield per ten per cent change in cover;
- brush and grasslands are associated with a ~10mm change in annual water yield per ten per cent change in cover;
- reductions in forest of less than 20% apparently cannot be detected by measuring streamflow
- streamflow response to deforestation depends on both the mean annual precipitation of the catchment and on the precipitation for the year under treatment.



*Figure 1:* Yield increases following change in vegetation cover (after Bosch and Hewlett 1982). The points represent the maximum annual increase in water yield during the first five years after treatment for cover reduction experiments and maximum decrease (within the time frame of the experiment) in water yield for afforestation experiments.

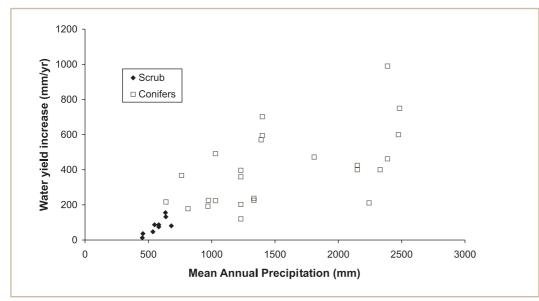



Figure 2: The distribution of water yield change after clear cutting of conifer and scrub (scaled to 100% reduction in cover), as a function of mean annual precipitation (after Bosch and Hewlett 1982).

Figure 1 shows the results of the Bosch and Hewlett review relating the maximum increase in water yield during the first five years after treatment to percentage reduction in cover and the cover type. Figure 1 illustrates that with an increase in the percentage reduction in cover an increase in annual streamflow occurs.

To explain some of the within group variability evident in **Figure 1**, the results of paired catchment studies involving scrub and conifers were scaled to predict the water yield increases that would have occurred if 100% of catchments had been cleared and these increase were plotted against the mean annual rainfall for the catchments (**Figure 2**).

From this work Bosch and Hewlett (1982) concluded that:

- water yield changes are greatest in high rainfall areas
- the effect of clear cutting is shorter lived in high rainfall areas due to the rapid regrowth of vegetation
- the annual change due to treatment in high rainfall areas appears to be independent of the variation in rainfall from year to year
- changes in water yield are more persistent in drier areas because of the slow recovery of vegetation, and are related to the precipitation in during the year following treatment.

In order to include afforestation experiments in their analysis, Bosch and Hewlett (1982) assumed that the maximum decrease in water yield was analogous to the first year increase in water yield for a deforestation experiment. This allowed general conclusions to be drawn. The use of maximum increase in water yield in the first five years after treatment may also introduce bias into the results as the maximum is likely to be affected by climate.

The reviews of Hibbert (1969) and Bosch and Hewlett (1982) mainly focused on catchments from temperate zone. Bruijnzeel (1988) looked at the impacts of vegetation changes on water yield, particularly dry season flows in the tropics. From this work it was concluded that:

- surface infiltration and evapotranspiration associated with the representative types of vegetation play a key role in determining what happens to the flow regime after forest conversion
- if infiltration opportunities after forest removal decrease to the extent that the amount of water leaving an area as quick flow exceeds the gain in baseflow associated with decreased evapotranspiration, then diminished dry season flows will result
- if surface infiltration characteristics are maintained the effect of reduced evapotranspiration after clearing will show up as an increase in baseflow



 the effect of reforesting will not only reflect the balance between changes in infiltration and evapotranspiration, but will also depend on the available water storage capacity of the soil.

The conclusion that under deforestation either a decrease or an increase in water yield may occur, seems to conflict with many of the results of paired catchment studies in temperate zones, in which increases in baseflow is almost uniformly observed (Hornbeck et al. 1993).

Reviews by Stednick (1996) and Sahin and Hall (1996) expanded on the work by Bosch and Hewlett (1982). Stednick (1996) reviewed result of studies from the United States and looked only at annual water yield changes as a result of timber harvesting. Their main focus was on the effect of the percentage of area treated the ability to detect changes in streamflow. Different hydrologic areas were defined based on temperature and precipitation regimes and it was concluded that:

- in general, changes in annual water yield from forest cover reductions of less than 20% of the catchment could not be determined by streamflow measurement
- the rationalisation of data suggested this value might change depending on the temperature and precipitation of the area. With a measurable increase in streamflow being observed for treatments of 15% of the catchment areas in the Rocky Mountains, compared with the Central Pains where treatment is required over 50% of the area before changes in water yield can be detected.

Sahin and Hall (1996) used a similar approach to Bosch and Hewlett (1982) in there analysis of 145 experimental catchments, dividing the vegetation types into broad categories (hardwood, conifer, conifer-hardwood, eucalypts, rainforest, scrub and grassland). However, instead of using the maximum increase in water yield in the first five years after treatment, they used the average water yield changes in up to the first five years after treatment. Using fuzzy linear regression analysis they concluded that for a ten per cent reduction in:

- conifer-type forest, water yield increased by 20-25 mm
- eucalypt forest, water yield increased by 6 mm
- scrub, water yield increased by 5 mm
- deciduous hardwoods gave a 17-19 mm increase in water yield.

These estimates are lower than those from Bosch and Hewlett's (1982) review. In the Bosch and Hewlett (1982) analysis adopted the maximum change in water yield in the first five years after treatment, this will lead higher estimate of the reduction in water yield as opposed to the same analysis performed with average increases. However the use of the average of up to the first five years after treatment may be impacted by regrowth of vegetation after clearing.

The results of these reviews are limited by the use of regrowth experiments to build relationships about annual increases in water yield after vegetation change. As discussed in Section 2.3, Vertessy (1999) highlights the limitations associated with the use of regrowth experiments for developing relationships between percentage of vegetation cover and water yield. The results of subsequent studies, that look at change in water yield as a function of vegetation age have shown that the maximum change in water yield may not occur in the first five years after treatment. The results from a paired catchments studies in mountain ash forests of Australia indicate that the maximum water yield changes, when old growth forest is replaced by regrowth vegetation is not see until approximately 20 years after treatment as shown by Kuczera (1987). The vigorous regrowth in mountain ash forests will in fact cause a decrease in water yield compared to old growth forests. This concept is further discussed in Section 4.2.

In reviewing paired catchment studies both Stednick (1996) and Sahin and Hall (1996) concluded that in summarising the result of catchment experiments, difficulties were experienced because of the lack of certain key statistics from the reported results (Sahin and Hall 1996) or insufficient detail of the site characteristics (Stednick 1996). This may account for the lack of general discussion about the impacts of land use change on inter-annual water yield (the change in water yield with change in vegetation age) and seasonal flows. While the information contained in previous reviews may be useful for determining the short-term changes in water yield, it does not allow for the likely long-term impact of permanent land use change or the inter and intra annual changes to be investigated.

Taking these factors into account and the limitations of regrowth experiments (**Section 2.3**) the remainder **Section 4** considers the impact of vegetation changes on water yield and flow regime at different temporal scales.

## 4.2 Mean annual and annual water yield

The main process responsible for changes in water yield as a result of vegetation changes at the mean annual scale is evapotranspiration (Zhang et al. 2001, Holmes and Sinclair 1986, Turner 1991). Holmes and Sinclair (1986) used the relationship between mean annual evapotranspiration and mean annual rainfall to predict the increase in water yield when converting from a forested catchment to grass. Their results were based on a series of catchments in Victoria, Australia. As discussed in Section 3, when assessing the mean annual changes in water yield the recharge and change in storage terms in the water balance are small compared to the other terms, hence the change in runoff can be predicted through the prediction of change in evapotranspiration.

The concept that under mean annual conditions it is reasonable to assume the that recharge and change in soil water storage are negligible compared to the rainfall, streamflow and evapotranspiration was further explored by Zhang et al. (1999, 2001). They expanded on the work by Holmes and Sinclair (1986) and included results from 250 studies worldwide as opposed to a small number of local catchments. Using a pair of curves to illustrate the difference in evapotranspiration under different vegetation types along a rainfall gradient, Zhang et al. (2001) developed a simple two parameter model to estimate the mean annual evapotranspiration at the catchment scale for different vegetation types. Figure 3 shows the Holmes Sinclair

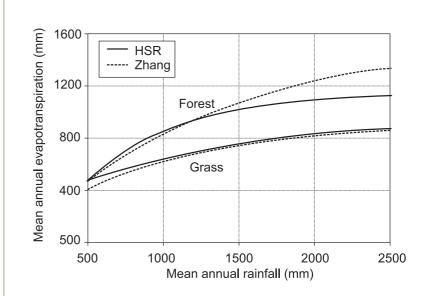



Figure 3: Relationship between land cover, mean annual rainfall and mean annual evapotranspiration, as predicted by Holmes and Sinclair (1986) and Zhang et al. (2001). Note the HSR is based on local catchments mainly in Victoria, Australia, while the Zhang Model is based on a worldwide database.

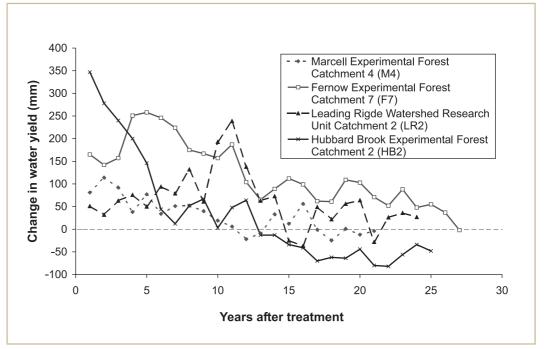
relationship (HSR) and the Zhang model. The difference between the grass and forest curve represents the increase in mean annual water yield for a 100% change in vegetation for a given mean annual rainfall. It should be noted that both paired catchments and time-trend studies were used in the derivation of Zhang curves.

Vertessy and Bessard (1999) adapted the HSR to predict the impact of afforestation on water yield in the Middle Murrumbidgee basin. Equations, based on the HSR were defined to estimate the mean annual runoff from grassland and eucalypt forest and were also adapted to predict the mean annual ET of pine plantations. These were then used in predict the large scale impacts of afforestation on water yields.

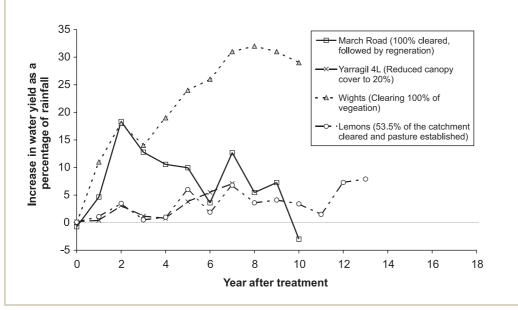
The nature of most paired catchment studies does not allow for the long term effects (>10 years) of permanent vegetation changes to be investigated. While the mean annual results based on the HSR or the Zhang model provide a means to assess the impact of permanent land use changes on mean annual flows, they do not provide a method for the assessment of inter-annual variability or the length of time it takes for a catchment to adjust to changes in vegetation type. Using paired catchment data Hornbeck et al. (1993) looked at the long term effects of

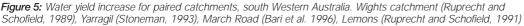


forest treatment on water yield in the USA under a range of climatic conditions. They found a variety of responses in water yield including:


- initial increases occurring promptly after forest clearing
- increases could be prolonged by controlling the regrowth (analogous with permanent land use change), when regeneration of forest cover was permitted the increase in streamflow diminished rapidly in about three to ten years
- a small increase or decrease in water yield may persist for at least a decade.

**Figure 4** shows the impact of vegetation changes for four catchments in the USA. The differing responses are consistent with the treatments undertaken for example in the Hubbard Brook experimental forest (HB2), 100% of the catchment was clear-cut and regrowth was then permitted. In this case an initial increase in water yield is observed (due to reduced interception and transpiration), as regrowth are permitted the water yield increase is reduced. The observed reduction in water yield about 15 years after treatment is due to the increased evapotranspiration of the regrowth compared to the old growth


forest. For the Fernow experimental forest (F7) the increase in water yield is more persistent than in Hubbard Brook. In the F7 catchment clearing was undertaken in two stages, with the clearing of the upper half of the catchment in year 0 and the clearing of the lower half the catchment in year 4. Herbicides were applied to the catchment to prevent regrowth until year 7. After this point the effect of the regrowth on water year can be seen with water yield returning to pre-treatment levels by year 27 (Hornbeck et al. 1993).


While the regrowth experiments of the types shown in **Figure 4** are useful for looking at the initial increase in water yield and the time taken for a catchment to return to its predisturbance state. It provides very limited information on the long-term impact of permanent vegetation changes that may occur under deforestation or afforestation, where the water yield will not return to its pre-treatment state.

There are limited examples of paired catchment studies looking at the impact of permanent land use changes on water yield. A number of paired catchments studied in south Western Australia have focussed on the deforestation of native forest for agricultural land. **Figure 5** shows the results of four



**Figure 4:** Change in annual water yield for four paired catchment studies in the USA. M4–100% Basal area cut. F7, upper half clear-cut (year 0), herbicides on upper half (2-7), lower half cut (year 4), herbicide on entire catchment (5-7). LR2–Lower 24% clear-cut (year 0), mid slope 27% clear-cut (years 4-5), herbicide on lower and mid slope (Year 7) 40% Upper slope clear-cut (year 8-9), herbicide all catchment (Year 10). HB2–100% clear felled (Year 0), herbicide on entire catchment (Years 2-4). After Hornbeck et al. (1993).





different paired catchments in the Collie Basin in Western Australia. The catchments in the Collie Basin, experience a Mediterranean climate with a mean annual precipitation ranging from 600 to 1400 mm. Predominate pre-treatment vegetation in these catchments are jarrah (*Eucalyptus marginata*) in the north and karri (*E. diversicolor*) in the south. March Road, Yarragil 4L, Wights and Lemons catchments have mean annual rainfalls of 1050 mm, 1120 mm, 1200 mm, 750 mm respectively.

Looking at the results for the deforestation in the Wights catchment, it can be seen that an initial increase in water yield is observed in the first year after treatment (due to decreased interception and evapotranspiration). This is followed by a steady increase in water yield until a new equilibrium is reached (Ruprecht and Schofield 1989). The results of clearing followed by regrowth in the March Road catchment show a similar tend to the regrowth in Hubbard Brook Catchment 2 USA (**Figure 4**), with an initial increase followed by a return to pre-treatment levels.

This highlights the limitations of regrowth studies in predicting the long-term effects of deforestation as the initial increase after clearing are not representative of the longterm increases in water yield. However, regrowth experiments have the potential to be used to investigate the likely changes in evapotranspiration and streamflow with relation to forest age. This has been the focus of a number of paired catchment studies in south eastern Australia, where after clearing and subsequent regeneration, a decrease in water yield occurs. This decrease is due to the vigorous nature of the regrowth, which transpires more water compared with old growth forests (Cornish and Vertessy 2001, Vertessy et al. 2001, Roberts et al. 2001). Through the use of paired catchment studies involving regrowth, it may be possible to predict the impact of afforestation or tree 'plantations' on inter-annual water yield.

The Mountain ash forests in southern Australia provide an excellent example of this reduction in water yield flowing the regeneration of vegetation after bushfire. Mountain ash forests are confined to the wetter parts of Victoria and Tasmania and grow at altitudes of between 200 m and 1000 m, where mean annual rainfall exceeds 1200 mm. Fire is an infrequent but vital component of the life cycle of these forests with the seedlings only growing on exposed soil with direct sunlight (Vertessy et al. 2001). Following fire hundreds of seeds germinate per hectare, the intense competition between the plants for light results in rapid tree growth and natural thinning of weaker trees. There is a significant body of empirical evidence to show that the amount of water yield from these catchments is closely linked with stand age (Langford 1976, Kuczera 1987,

A CRITICAL REVIEW OF PAIRED CATCHMENT STUDIES WITH REFERENCE TO SEASONAL FLOWS AND CLIMATIC VARIABILITY

Watson et al. 1999). The 'Kuczera curve' that describes the relationship between stand age and annual water yield is characterised by the following features:

- the mean annual water from large catchments covered with old growth mountain ash forest (>200 year) is approximately 1195 mm for regions where mean annual rainfall is ~1800 mm;
- after burning and full regeneration of mountain ash forest the water yield reduces to 580 mm at an age of ~ 27 years
- after 27 years of age the mean annual water yield increases and returns to pre-disturbance levels, taking as long as 150 years to fully recover. (Vertessy et al. 2001)

The work by Cornish and Vertessy (2001) and Roberts et al. (2001) indicates that this may be a more general behaviour for eucalypt forests in Australia and does not only apply to mountain ash forests.

Examples of long-term response to permanent vegetation change from grass or pasture to tree plantations can be found in South Africa, New Zealand and Australia. **Figure 5** showed the response of streamflow to the clearing of native vegetation for agriculture for deforestation and regrowth experiments in south Western Australia. South Africa has the longest and most detailed record of paired catchment afforestation experiments, addressing permanent land use change from grassland to forest. Using data from South African afforestation experiments, Scott and Smith (1997) developed a series of generalised curves to predict the impact of afforestation on annual total flows and low flows as a function of plantation age, species planted and site suitability as shown in **Figure 6**.

The curves in **Figure 6** are similar to that observed in **Figure 5** (particularly for Wights catchment), indicating that the response is similar for both afforestation and deforestation, with a period of transience until a new equilibrium is reached. **Figure 7** shows the results of a deforestation and afforestation experiment in areas of similar rainfall. A similar change in water yield, under either deforestation or afforestation in the long-term is observed. The time taken to reach this equilibrium is dependent on the treatment, with a new equilibrium being established more rapidly under deforestation then afforestation.

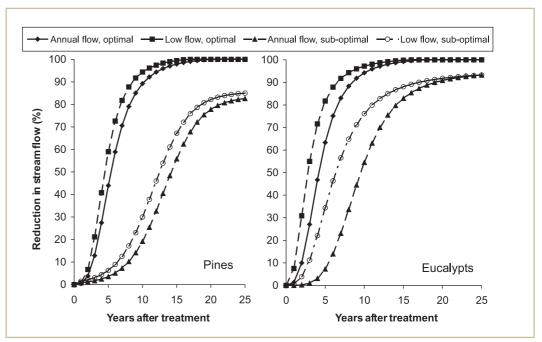



Figure 6: Generalised curves from estimating the percentage reduction in total and low flow after 100% afforestation with pine and eucalypt afforestation (Scott and Lesch 1997).

14

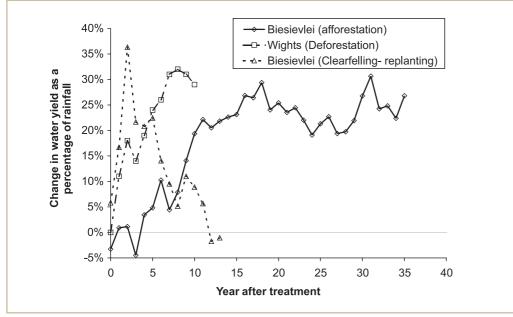



Figure 7: Change in water yield as a percentage of rainfall for deforestation (Wights catchment, Western Australia. Mean annual rainfall = 1200 mm after Ruprecht and Schofield 1989), afforestation and clear felling-replanting (Biesievlei catchment, South Africa. Mean Annual Rainfall, 1298mm, Scott et al. 2000).

The results for the Biesievlei catchment, Jonkershoek, South Africa indicate that it will take between 15 and 20 years for the catchment to reach a new equilibrium under afforestation, while the deforestation experiment from Wights catchments in Western Australia, indicates that a new equilibrium is reach in eight to ten years. This casts doubt on the use of the assumption of Bosch and Hewlett (1982) that the maximum reduction in water yield under afforestation is equivalent to the maximum increase in water yield in the first five years after treatments for regrowth and deforestation experiments.

#### 4.3 Annual flow regime

#### 4.3.1 Flow duration curves

The impact of changes in vegetation type on flow regime can be depicted through the use of flow duration curves (FDC). The FDC for a catchment provides a graphical summary of the streamflow variability at a given location, with the shape being determined by rainfall pattern, catchment size and the physiographic characteristics of the catchment. The shape of the flow duration curve is also going to be influenced by water resources development (water abstractions, upstream reservoirs etc.) and land-use type (Smakhtin 1999).

The FDC (the cumulative distribution of the river flows) has been used widely as a measure of the flow regime as it provides an easy way

of displaying the complete range for flows and how they would be changed under different land use scenarios in different climatic zones.

FDC can be constructed using multiple temporal scales of streamflow data: monthly or daily flows and depicted either using all the flows in a given year (annual flow duration curve) or flows for subset of yearly flows (seasonal flow duration curve). Smakhtin (1999) adopted the following terminology and this terminology has been adopted when discussion the effect of vegetation changes on the FDC for various vegetation change scenarios:

- One-day annual FDC—Constructed using daily data for a complete year
- One-month annual FDC—Constructed using monthly data for a complete year
- One-day seasonal FDC—Constructed using daily data for a given season
- One-month seasonal FDC—Constructed using monthly data for a given season

One of the limitations of using FDC for a comparison of high and low flows under different vegetation types is that the relative distribution of high and low flows varies depending on whether a particular year is wet or dry, therefore where possible it is important to compare years with similar precipitation, to minimise the variations due to climate (Burt and Swank 1992).



#### 4.3.2 High and low flows

In discussing the impacts of vegetation change on flow regime low and high flow need to be defined. The most widely used definition of low flows are the flows within the range of the 70% to 99% time exceeded (Smakhtin 2001), hence this definition has been adopted. High or peak flows have been taken as the flows that occur one to ten per cent of the time.

### 4.3.3 Impact of vegetation changes on annual FDC, high and low flows

The flow duration curves discussed below are one-day annual FDC, and have been plotted for catchments in different climatic zones with differing vegetation changes. While data exists to plot such curves for a large number of catchment only three examples have been chosen and discussed here. These examples are the Redhill catchment in south eastern Australia, where a pine plantation was established on pasture, Wights catchment in south western Australia where pasture replaced native vegetation and the Glendhu catchment in New Zealand, where a pine plantation was established on tussock grassland.

Figure 8 depicts the change in flow regime for the Redhill catchment in south eastern

Australia. The catchment is located in a about 50 km west of Canberra, in the Murrumbidgee Basin and is part of the paired catchment study looking at the impact of pine plantations on water yield. Redhill has a catchment area of 195 hectares while the control catchment Kylies Run is 135 hectares. Both catchments range in altitude from 590 m to 835 m. The climate of the area is highly variable with a winter dominant rainfall. The mean annual rainfall of the Redhill catchment is 876 mm (Hicke 2001). There is no pre-treatment data available for this paired catchment study and due to differences in soil properties between the two catchments, there was also marked difference between the flow regimes even before the pines are well established at the beginning of the treatment period. It was therefore decided to compare the FDC for years of similar annual rainfall for the treated catchment only. FDC for one and eight year old pines (based on a water year from May to April) have been used to quantify the relative changes in the high and lows flows as a results of vegetations change. The one-year and eight-year old pines were chosen as these years have similar rainfalls, 887 mm and 879 mm respectively. The FDC indicated that there is approximately a 50% reduction in high flows while there is 100% reduction in low flows.

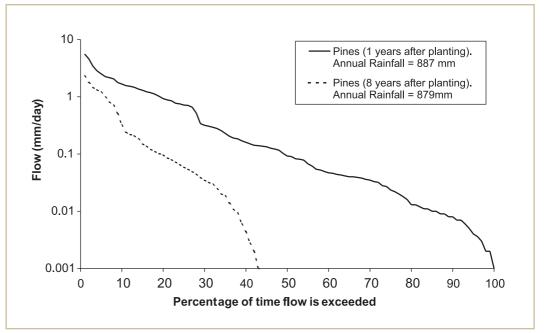



Figure 8: Flow Duration curves for the Redhill catchment, near Tumut, NSW 1 year old pines and 8 year old pines. (after Vertessy 2000).

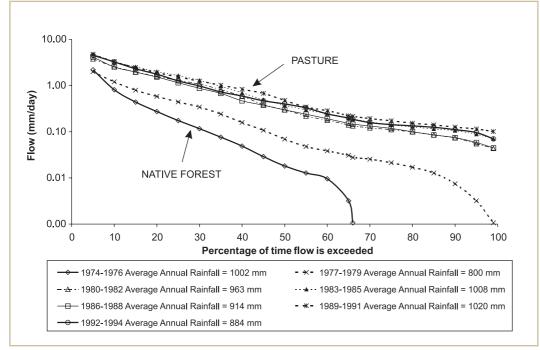



Figure 9: Flow Duration curves for the Wights catchment in southwestern Australia. (Based on a water year from April to March).

Figure 9 depicts the response to conversion of native forest to pasture in the Wights catchment in south Western Australia. As discussed in **Section 4.2** the Wights catchment is part of a series on paired catchment studies in south Western Australia. These catchments have two important local characteristics,

- an increasing soil salinity storage with distance inland; and
- a local groundwater system.

The interplay between the groundwater and vegetation plays in important role in the hydrological response of these catchments to vegetation change. The hydrological response to replacement of native forests by pastures is related to an increase in groundwater discharge area (Schofield 1996).

As with **Figure 8**, it can be seen that all sections of the flow regime are affected by the change in vegetation type. Comparing the FDC for native vegetation (1974-1976) with a period of similar climatic conditions of pasture (1983-1985). We can see that you would expect a 50% reduction in high flows when going to pasture to forest and a 100% reduction in low flows.

Figure 10 depicts an alternate response to the establishment of pine plantations in the Glendhu experimental catchments in New

Zealand (169'45'E, 45'50'S). The control and treated catchments has mean annual rainfalls of 1310mm and 1290mm respectively. The treatment involved the planting 67% of the catchment with Pinus radiata (McLean 2001). Unlike the Redhill and Wights catchments the control and treated FDC for the control and treated catchments are similar during the calibration period. Therefore the changes in high and low flows have been assessed through comparison the control to the treated catchment at various stages after treatment. The reductions in low and high flows as similar for all sections of the flow regime with approximately 30% reduction in both low and high flows. This response is typical of many catchments including the mountain ash catchments in Victoria (Watson et al. 1999) and the Biesievlei catchment in South Africa.

Figure 8, Figure 9 and Figure 10 depict two possible responses in flow regime as a result of vegetation change. The response seen in the Redhill and Wights catchments are typical of areas were annual evapotranspiration of forests approaches annual precipitation, while the response seen in Glendhu is typical of areas where annual precipitation is greater than the annual evapotranspiration. In the Mountain ash catchments in southern Australia, Watson et al. (1999) noted that in wetter catchments all flows respond to



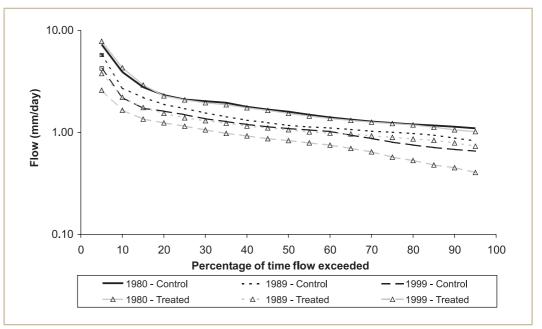



Figure 10: Flow duration curve from the Glendhu experimental catchments New Zealand. 1980—during the calibration period (both catchments tussock). 1989—6 years after pine plantation established. 1999—16 years after pine plantation established. (McLean 2001)

climatic and vegetation changes in unison with the changes in the mean flow, however in the drier parts of the study area changes in low flows are accentuated.

## 4.4 Seasonal water yield and flow regime

As noted earlier, information on the impact of land use change on seasonal or monthly flow is seldom reported in quantitative detail in the literature and generalisations about seasonality of yield changes under different land use have not been made. The majority of the previous work of land use change and water yield has had an emphasis on annual or mean annual water yield. The impact of land use change on seasonal yield can be as important as the impact on annual water yield, particular where flows during the dry season are of importance to downstream water users.

Johnson and Kovner (1956) noted that annual streamflow and evapotranspiration do not tell the complete story because of seasonal interactions of factors affecting the water balance, such as soil moisture content. While on an annual basis the changes in soil moisture between one year and the next can be assumed to be negligible, this is not the case on a seasonal basis. This section will aim to provide a summary of the literature on seasonal water yield. The analysis of paired catchment data in the USA in the 1970s and early 1980s commonly used regression by least squares on both annual and monthly data (Hibbert 1969, Hornbeck et al. 1987, Rich and Gottfried 1976, Johnson and Kovner 1956). This allowed for the impact of annual water yield as well as seasonality to be assessed. The results of these studies indicate that variations can be found in seasonal yield but lack quantitative data on the water yield changes. This lack of quantitative data makes it difficult to generalise the results on seasonal water yield between sites.

Hornbeck et al. (1997) looked at annual and seasonal flows for the first year after clear felling in the Hubbard Brook experimental forest. Separating annual yields into growing and dormant seasons allowing contrasting of treatment effects between periods of full leaf and maximum evapotranspiration, and period when deciduous forests are dormant and minimum evapotranspiration. They observed that most of the increases and decrease in annual yield occur during the growing season as shown in **Figure 11**. They concluded that water yield increases were a result of decreased transpiration and primarily occurred as augmentation to low flows, as illustrated by the flow duration curves in Figure 11. While this analysis is an obvious thing to do for deciduous catchments the definition of seasons is less obvious for evergreen vegetation.

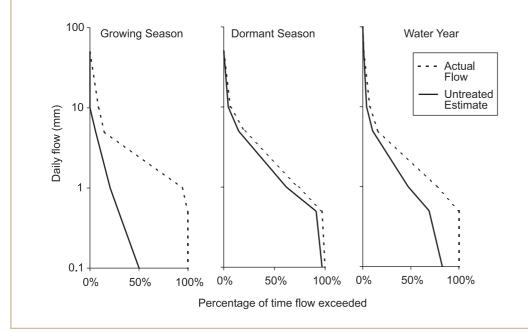



Figure 11: Flow duration curves for the first year after the clear-felling treatment—Hubbard Brook experimental forest (after Hornbeck et al. (1997)).

Using a similar approach to the analysis of Hornbeck et al. (1997), McLean (2001) produced flow duration curves to assess the hydrological response during Winter (July–September) and Summer (December–February) due to the conversion of tussock to pine plantations in New Zealand. From this study it was concluded that:

- the differences in summer flows were more variable than the winter differences, due to the high variability in the rainfall over the summer months
- the seasonal effects of land use modifications are not easily identified through the use of flow duration curves.

The difference in the results between the USA catchment, where notable seasonal differences were observed, and those in New Zealand, where seasonal changes could not be detected, can be attributed to the deciduous nature of the vegetation in the USA compared with the evergreen vegetation of the pine plantations in New Zealand. The distinct dormant season in the USA where there are no leaves on the trees results in lower interception and transpiration rates making the evapotranspiration rates of forested areas very similar to those of short crops. However where there is no dormant season, such as in eucalypt or pine plantations, the seasonal changes in water yield are limited more by climatic conditions

of the seasons than by changing evapotranspiration rates.

Sharda et al. (1998) used a monthly average dataset to look at the seasonal nature of water yield changes at Glenmorgan Research Farm, south India. It was observed that the major reduction in mean annual flow caused by the blue gum plantation occurred during the months from July through to October, when 60% of the mean annual rainfall occurred (Table 1). These results indicate that the major reductions in flow volume occurred during the monsoon (July-October), however the percentage reductions in flows indicate that significant reductions occur in all months of the year. It was also noted that although the reduction in flow in the dry period was small on a volume basis compared to the wet season the percentage reduction in flow is significant in all months. The early and late monsoon periods show different responses in water change yield, which may be related to soil moisture dynamics introducing delays in response time.

| Month Rainfall | Flow in Catchment B (mm)    |      | Deficit<br>(Computed—Observed) | Percentage |    |
|----------------|-----------------------------|------|--------------------------------|------------|----|
|                | (mm) Observed Computed (mm) | (mm) | reduction in flow              |            |    |
| Apr            | 71.3                        | 3.8  | 4.9                            | 1.1        | 22 |
| Мау            | 111.1                       | 7    | 9                              | 2          | 22 |
| Jun            | 166.4                       | 16.3 | 21.8                           | 5.5        | 25 |
| Jul            | 233                         | 60.9 | 78.6                           | 17.7       | 23 |
| Aug            | 221.2                       | 61.3 | 78.4                           | 17.1       | 22 |
| Sep            | 133.6                       | 27.3 | 37.7                           | 10.4       | 28 |
| Oct            | 165.1                       | 40.4 | 58.6                           | 18.2       | 31 |
| Nov            | 70                          | 24.1 | 33.8                           | 9.7        | 29 |
| Dec            | 64.9                        | 20.5 | 27.9                           | 7.4        | 27 |
| Jan            | 9.9                         | 7.4  | 9.6                            | 2.2        | 23 |
| Feb            | 5.9                         | 3.9  | 4.6                            | 0.7        | 15 |
| Mar            | 17.9                        | 3.2  | 4                              | 0.8        | 20 |

TABLE 1. Average monthly reduction in total run-off due to bluegum plantation in the second rotation (after Sharda et al. 1998).

Similar analysis was carried out on the Glendhu catchment in New Zealand and the Cathedral

Peak II catchment in South Africa. The results of this analysis are presented in **Figure 12**.

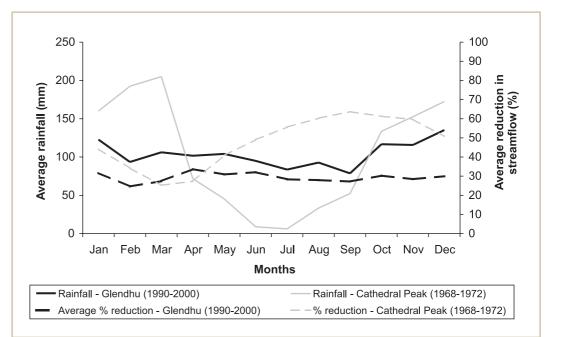



Figure 12: Average monthly reductions in streamflow from the Glendhu catchment (afforestation with pines 1980) and Cathedral Peak II, South Africa (afforestation 1950-1955).

Other studies reporting monthly or seasonal results include;

- Lane and McKay (2001) who concluded that there was no clear or persistent seasonal influence on either total streamflow or base flow change following logging
- Ruprecht et al. (1991) observed that the major increase in streamflow occurred from July to October, however increases were still significant in June, November and December. After thinning there was significant flow over the summer and early autumn
- Stoneman (1993)—observed that the largest increases in streamflow occurred between June and October (Winter) with small increases in November and December (Summer).

As stated by Vertessy (1999), the information on the seasonal variations in water yield is limited and rather confusing. The way in which the data on seasonal yield are presented in the literature is generally descriptive in nature, making it hard to generalise between the results of different studies. While on an annual basis the results of the studies seem to be easily generalised according to vegetation type, this is not the case on a seasonal basis.

Jones and Grant (2001a, 2001b) noted that the nature of the analysis undertaken could impact on the results. This was displayed by the original analysis of peak flow responses to clear cutting and roads in small and large basins, western Cascades (Jones and Grant 1996) and the subsequent reanalysis of the same data by Thomas and Megahan (1998) where the use of differing methods on the same data set yielded different results. The interpretation of the results from the two analyses has resulted in Jones and Grant (2001a, 2001b) concluding both analyses showed that forest harvest has increased peak discharges in small basins by as much as 50% and 100% in large basins. Thomas and Megahan (2001) agreed that peak flow increases (of up to 100%) in small events may occur, but argued that that no evidence existed to suggest that this was the case for all event sizes including large floods.

## 5. Summary of limitation of paired catchments studies

In the following section the limitations of paired catchment experiments are discussed. These limitations are divided into two sections. The first section summarises the limitations in the analysis of paired catchment data in terms of what has been reported in the literature. The second deals with the limitations associated with the application of paired catchment results to time trend studies.

## 5.1 Limitations in reported literature

During the review of literature three major limitations were highlighted in relations to the previous analysis of paired catchment data. These have been disused in **Section 4** and are:

- generalisations about annual increases in water yield (Bosch and Hewlett 1982, Stednick 1996, Salin and Hall 1996) are generally only based on short term results of regrowth experiments (maximum change in the first five years after treatment, or first year increases). The results of permanent land use change experiments indicate that it may take longer than five years for the maximum change to be observed and for a new hydrologic equilibrium to be established
- changes in vegetation type will effect not only mean annual flow, but also the variability of annual flow. Peel et al. (2001) noted that the continental differences in the variability of annual runoff were due to two factors, the continental differences in the variability of annual precipitation and the distribution of evergreen and deciduous vegetation
- most studies do not evaluate the seasonal changes in water yield.
   Where seasonal analysis is carried out the results reported are generally of a descriptive nature
- in order to assess the impacts of vegetation changes on seasonal water yield, a method needs to be established

that can be applied to a large number of catchments, so when comparing results between sites, the generalisations are not complicated by conflicting results from different analysis methods.

## 5.2 Application to large catchments

The major advantage of using paired catchment studies in investigating the impact of vegetation changes on water yield is that the control catchments provide a means of separating out the changes in yield as a result of climate from those due to land use. However, if the results of small experimental catchments cannot be applied to larger nonpaired catchments with some degree of confidence, then their application is limited.

#### 5.2.1 Spatial issues

Paired catchment studies provide a good method for determining the relationships between percentage vegetation change and water yield in relatively small catchments. However, methods are needed for scaling these results to larger catchments where the area of subject to land use change is likely to be patchy and relatively small compared to the overall catchment size.

The results summarised in Section 4 indicate that for any impact of land use change to be detected, at least 20% of the catchment needs to be treated (Bosch and Hewlett 1982). This result is derived from the research on small experimental catchments. Munday et al. (2001) developed a model to simulate the temporal changes in streamflow associated with reafforestation of existing grassland and the subsequent management of the forest for timber harvesting for the Adjungbilly catchment (389 km<sup>2</sup>) in New South Wales using results from paired catchment studies of Redhill (for pine plantations) and Karuah (for eucalypt forest). The results indicated that while the trend in streamflow

changes are statistically insignificant, the model did satisfactorily simulate the magnitude and nature of the changes in mean annual yield from the catchment given the historical changes in vegetation type.

In determining the impact of forest conversion to agriculture in a large river basin in Thailand, Wilk et al. (2001) commented that the results of small scale studies have shown that a large reduction in forest cover increases the annual streamflow and raised the issue of whether similar results would emerge from large, partly deforested catchments with variable vegetative pattern at different growth stages. Their study concluded that despite a reduction in forest cover from 80% to 30% in the Nam Pong river basin, no change in river discharge could be detected. This is likely to be due to the fact that land use change in large river basins is not uniform in space or time.

At present the impacts on water yield at the whole of catchment or regional scale are limited to mean annual investigations. Scott et al. (1998) used the generalised curves of Scott and Smith (1997) to determine the likely change in water yield on total run-off and low flows at regional scale as a result of afforestation in South Africa. This is the best example of prediction of water yield changes at a regional scale.

There are limited examples of the extrapolation of the generalisations gained through the used of small experimental catchments to the regional scale and how treatments over less than 20% of the catchment impact on water yield. In terms of making predictions it is reasonable to assume that 0% land use change will not cause any change in water yield. Thus forcing the linear relationships suggested by Bosch and Hewlett (1982) thorough the origin would allow predictions to be made if less than 20% of a catchment is subjected to changes in vegetation. The ability to detect the change in water yield is of less importance than how well the magnitude of the water yield change can be predicted. Once the predictions have been made the importance of regional effects can be assessed. Another scale issue that could potentially be significant is the change in geomorphology as you move down from uplands to lowlands.

#### 5.2.2 Climatic Variability

One of the advantages of paired catchment studies is that they allow the removal of climate variability through the comparison of two catchments subject to the same climatic conditions, under different land uses. The separation of climatic variability effects from the water yield changes as a result of land use alterations is a key problem for time trend studies.

In cases where paired catchments are available, the separation of land use impacts from climatic factors can be achieved through the comparison of the two catchments. This can be done not only for annual and mean annual totals, but also for flow regime as depicted by the annual flow duration curves in **Figure 8**, **Figure 9** and **Figure 10**. There is also the potential to use paired catchments to determine the seasonal impacts of vegetation change.

For example, in Figure 10 a change in the flow duration curve for the tussock catchment (control), between 1980 and 1989 can be seen, despite the fact that no land use change has occurred. The most likely explanation for this is the climate differences between 1980 and 1989, causing a change in the amount of runoff. Where both the flow duration curves for the control catchment and the treated catchment are available, separation of the impact of land use on flow regime is possible. However, for Figure 7, where all the flow duration curves have been plotted for the same catchment, how does one separate guantitatively the changes due to land use from the fluctuations due to climate.

Three possible methods that could be used for the removal of climatic variability from non-paired catchments are:

- the use of a generalised additive model to separate the climate signal from land use from the percentiles of the flow duration curves, either annual or seasonal
- 2. removing exogenous variable so trends can be more easily identified in the variable of interest (land use change in this case)
- the use of a rainfall runoff model to determine flows under different land uses for the same climatic period.

## 6. Summary and conclusions

This review highlights the lack of information available in the literature for examining the impacts of vegetation changes on seasonal yield and flow regime. While the effect of vegetations change on a mean annual basis is well understood, research on seasonal water yield reported in the literature is limited and confusing and is primarily of a descriptive nature.

The processes affected by land use change are reasonably well understood at a mean annual or annual basis, however changes on a seasonal basis and in flow regime are not as well understood, particularly in relation to soil water storage. On a mean annual basis, changes in soil water storage can be assumed to be insignificant in relation to the other terms in the water balance equation; however, this is not the case at a seasonal time scale.

The previous reviews of paired catchment studies have focused mainly on regrowth experiments, where changes in water yield are only observed in the first couple of years following treatment before returning to pretreatment levels. Given the transient nature of the water yield changes in regrowth catchments the applications of these results to permanent land use changes are questionable. In terms of future land use changes in Australia, the increase in afforestation due to the 2020 Vision is likely to be of a more permanent nature leading to permanent change in water yield and flow regime. This review raises a number of issues relating to land use change and water yield that need further investigation. These include:

- Can the results of regrowth studies provide relevant information on the effects of permanent land use change or the likely changes in evapotranspiration with time in tree plantations?
- How will the effect of permanent land use change alter over time? Do the generalisations made by Scott and Smith (1997) in Figure 6 apply to other areas around the world?
- How will vegetation changes affect flow regime? Will these effects vary between regions or will the major changes in water yield be reflected in low or high flows?
- Can the generalisations drawn from paired catchment studies be applied to larger catchments and at regional scales?
- Can the impacts of climatic variability be separated from the effects of land use change?

## **Reference** list

Alexander, RR, Troendle, CA, Kaufmann, MR, Shepperd, WD & Crouch, GL 1985, Fraser Experimental Forest, Colorado: Research Program and Published Research 1937-1985. CO. Report: FSGTR/RM-118, Rocky Mountain Forest and Range Experiment Station, Fort Collins, 53p.

Baker, MB 1999, *History of Watershed Research in the Central Arizona Highlands*. Research Paper RMRS-GTR-29, Research Paper RMRS-GTR-29, United States Department of Agriculture—Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins.

Baker, MB 1984, Changes in streamflow in an herbicide-treated pinyon-juniper watershed in Arizona. *Water Resources Research*, **20** (11), 1639-1642.

Baker, MB 1986, Effects of Ponderosa Pine Treatments on Water Yield in Arizona. *Water Resources Research*, **22** (1), 67-73.

Bari, MA, Smith, N, Ruprecht, JK & Boyd, BW 1996, Changes in streamflow components following logging and regeneration in the southern forest of Western Australia. *Hydrological Processes*, **10**, 447-461.

Bonell, M, Gilmore, DA, & Cassells, DS 1983, Runoff generation in tropical northeast Queensland, Australia, and the implications for land use management – Hydrology of humid tropical regions with particular reference to the hydrological effect to agriculture and forestry practice. In *Proceedings of Symposium on the Hydrology of Humid Tropical Regions*, R. Keller (ed.), IAHS Publication No. 140, Hamburg, pp. 287-297.

Borg, H, Bell, RW & Loh, IC 1988, Streamflow and Stream Salinity in a Small Water Supply Catchment in Southwest Western Australia After Reforestation. *Journal of Hydrology*, **103** (3-4), 323-333.

Bosch, JM & Hewlett, JD 1982, A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. *Journal of Hydrology*, **55** (1/4), 3-23.

Bren, LJ & Papworth, M 1991, Early water yield effects of a conversion of slopes of a eucalypt forest catchment to radiata pine plantation. *Water Resources Research*, **27**, 2421-2428.

Bruijnzeel, LA 1988, (De)forestation and dry season flow in the tropics: A closer look. *Journal of Tropical Forest Science*, **2**, 229-243.

Burgy, RH & Papazafiriou, ZG 1971, Vegetative Management And Water Yield Relationships. In *Biological Effects In The Hydrological Cycle: Proceedings Of The Third International Seminar For Hydrology Professors, July 18-30, 1971*, Purdue University, West Lafayette.

Burt, TP & Swank, WT 1992, Flow Frequency Responses to Hardwood-To-Grass Conversion and Subsequent Succession. *Hydrological Processes*, 6 (2), 179-188.

Calder, IR 1996, II. Processes—Water use by forests at the plot and catchment scale. *Commonwealth Forestry Review*, **75**, 19-30.

Calder, IR 1998, Water-resource and land-use issues. SWIM Paper 3, International Water Management Institute, Colombo.

Calder, IR 1999, *The Blue Revolution—Land Use and Integrated Water Resources Management*. Earthscan Publications Ltd., London.

Cassells, DS, Gilmour, DA & Bonell, M 1982, Drainage processes in a North Queensland rainforest catchment – their influence of catchment response to land use change. In *Rural Drainage in northern Australia*, 27-29 September 1982, Darling Downs Institute of Advanced Education, Toowomba, pp.257-282.

Cassells, DS, Gilmour, DA & Bonell, M 1985, Catchment response and watershed management in the tropical rainforests in North Eastern Australia. *Forest Ecology and Management*, **10**, 155-175.

Cornish, PM, 1993, The effects of logging and forest regeneration on water yields in a moist eucalypt forest in New South Wales, Australia. *Journal of Hydrology*, **150**, 301-322.

Cornish, PM & Vertessy, RA 2001, Forest age-induced changes in evapotranspiration and water yield in eucalypt forest. *Journal of Hydrology*, **242**, 43-63.

Crapper, PF, O'Loughlin, EM & Mackay, SM 1989, The hydrological affect of intensive logging operation on a small forested catchment near Eden, NSW. *Hydrology and Water Resources Symposium 1989, University of Canterbury, Christchurch*, The Institution of Engineers, Australia, pp. 444-448.

- 25

A CRITICAL REVIEW OF PAIRED CATCHMENT STUDIES WITH REFERENCE TO SEASONAL FLOWS AND CLIMATIC VARIABILITY

- Davis, EA 1984, Conversion of Arizona Chaparral to Grass Increases Water Yield and Nitrate Loss. Water Resources Research, 20, 1643-1649.
- Dietterick, BC and Lynch, JA 1989, The cumulative hydrologic effects on stormflows of successive clear cuts on a small headwater basin. In *Proceedings of the Symposium on Headwaters Hydrology*, American Water Resources Association, Bethesda, pp. 473-485.

Dingman, SL 1994, Physical Hydrology. Macmillan Publishing Company, New York.

DPIE 1997, The 2020 Vision Statement. Department of Primary Industries and Energy, Canberra.

- Dye, PJ 1996, 'Climate, forest and streamflow relationships in South African afforested catchments,' Commonwealth Forestry Review, **75** (1), pp. 31-38.
- Fahey, B & Jackson, R 1997, Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. *Agricultural and Forest Meteorology*, **84** (1-2), 69-82.
- Federer, CA, Flynn, LD, Martin, CW, Hornbeck, JW & Pierce, RS 1990, *Thirty Years of Hydrometeorologic Data at Hubbard Brook Experimental Forest, New Hampshire.* General Technical Report NE-141, United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Newtown Square, PA.
- Gilmore, DA, Cassells, DA & Bonell, M 1982, Hydrological research in the tropical rainforests of North Queensland: Some Implications for land use management. In *the first national symposium on forest hydrology, Institute of Engineers, Australian National Conference,* Institute of Engineers, Australia, Canberra, pp.145-152.
- Harris, DD 1973, Hydrologic changes after clear-cut logging in a small Oregon coastal watershed. *Journal of Research of the U.S. Geological Survey*, **1**, 487-491.
- Harris, DD 1977, Hydrologic changes after logging in two small Oregon coastal watersheds. U.S. Geological Survey water-supply paper, 2037, 31p.
- Harrold, LL, Brakensiek, DL, McGuinness, JL, Amerman, CR & Dreibelblis, FR 1962, Influence of land use and treatment on the hydrology of Small Watersheds at Coshocton, Ohio, 1938-1957. United States Department of Agriculture: Technical Bulletin, 194, 1256p.
- Hewlett, JD & Doss, R 1984, Forests, Floods, and Erosion: A Watershed Experiment in the Southeastern Piedmont, Forest Science, **30**, 424-434.
- Hewlett, JD, Post, HE & Doss, R 1984, Effect of clear-cut silviculture on dissolved ion export and water yield in the piedmont. *Water Resources Research*, **20** (7), 1030-1038.
- Hibbert, AR 1967, Forest Treatment effects on water yield. Reprint from *Proceedings of International Symposium on* Forest Hydrology, Pennysylvania State University 1965, Pergamon Press, New York, pp.527-543.
- Hibbert, AR 1969, Water yield changes after converting a forested catchment to grass. *Water Resources Research*, **5** (3), 634-640.
- Hibbert, AR 1971, Increases in streamflow after converting chaparral to grass, *Water Resources Research*, **7** (10), 71-80.
- Hickel, K 2001, *The effect of pine afforestation on flow regime in small upland catchments*. Masters Thesis, University of Stuttgart, Stuttgart.
- Holmes, JW & Sinclair, JA 1986, Water Yield from some afforested catchments in Victoria. *Hydrology and Water Resources Symposium*, Griffith University, Brisbane, 25-27 November 1986, National Conference Publication 86/13, Institution of Engineers, Australia, Canberra.
- Hornbeck, JW, Adams, MB, Corbett, ES, Verry, ES & Lynch, JA 1993, Long-term impacts of forest treatments on water yield: a summary for northeastern USA. *Journal of Hydrology*, **150** (2/4), 323-344.
- Hornbeck, JW, Martin, CW & Eagar, C 1997, Summary of water yield experiments at Hubbard Brook Experimental Forest, New Hampshire. *Canadian Journal of Forestry Research*, **27**, 2043-2052.
- Hornbeck, JW, Martin, CW, Pierce, RS, Bormann, FH, Likens, GE & Eaton, JS 1987, *The Northern Hardwood Forest Ecosystem: Ten Years of Recovery from Clearcutting*. United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, NE-RP-596, Newtown Square, PA, 30p.
- Hsia, YJ & Koh, CC 1983, Water yield resulting from clear cutting a small hardwood basin in central Taiwan: Hydrology of Humid Tropical Regions with Particular Reference to the Hydrological effects of Agriculture and Forestry Practice. In *Proceedings of Symposium on the Hydrology of Humid Tropical Regions*, R. Keller (ed.), IAHS Publication No. 140, Hamburg, pp. 215–220.

Jayasuriya, MDA & O'Shaughnessy, PJ 1988, The use of mathematical models in evaluating forest treatments effects on streamflow. *Hydrology and Water Resources Symposium 1988, Australia, 1-3 February 1988,* The Institution of Engineers Australia, Canberra.

Johnson, EA & Kovner, JL 1956, Effect on streamflow of cutting a forest understory. Forest Science, 2, 82-91.

- Johnson, RC 1995, *Effects of Upland afforestation on Water Resources,' The Balquhidder Experiment 1981-1991.* Report No. 116, Institute of Hydrology, Wallingford, UK.
- Jones, JA 2000, Hydrologic processes and peak discharge response to forest removal, regrowth and roads in 10 small experimental basins, western Cascades, Oregon. *Water Resources Research*, **36** (9), 2621-2643.
- Jones, JA & Grant, GE 1996, Peak flow responses to clear-cutting and roads in small and large basins, Western Cascades, Oregon. *Water Resources Research*, **32**, 959-974.
- Jones, JA & Grant, GE 2001a, Comment on Peak flow response to clear-cutting and road in small and large basins, western Cascades, Oregon: A second opinion by RB Thomas & WF Megahan. Water Resources Research, 37, 175-178.
- Jones, JA & Grant, GE 2001b, Comment on Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon, by JA Jones & GE Grant. *Water Resources Research*, **37**, 179-180.
- Keppeler, ET & Ziemer, RR 1990, Logging effect on streamflow: Water yield and Summer low flows at Caspar Creek in Northwestern California. *Water Resources, Research*, **26** (7), 1669-1679.
- Kirby, C, Newson, MD & Gilman, K 1991, *Plynlimon research: The first two decades*. Report No. 109, Institute of Hydrology, Wallingford, UK.
- Kuczera, G 1987, Prediction of Water Yield Reductions Following a Bushfire in Ash-Mixed Species Eucalypt Forest. Journal of Hydrology, 94 (3/4), 215-236.
- Lane, PNJ & Mackay, SM 2001, Streamflow response of mixed-species eucalypt forest to patch cutting and thinning treatments. *Forest Ecology and Management*, **143**, 131-142.
- Langford, KJ 1976, Change in yield of water following a bushfire in a forest of Eucalyptus regnans. *Journal of Hydrology*, **29** (1/2), 87-114.
- Lawrence, PA & Thorburn, PJ 1989, *Changes in hydrology, soil fertility and productivity of brigalow catchments following clearing.* Soil Conservation Research Branch, Queensland Department of Primary Industries, Toowoomba.
- Lawrence, PA & Sinclair, DP 1986, Analysis of rainfall variability on the Brigalow experimental catchments. *Hydrology and Water Resources Symposium*, Griffith University, Brisbane, 25-27 November 1986, National Conference Publication 86/13, Institution of Engineers, Australia, Canberra, pp.334-339.
- Lynch, JA & Corbett, ES 1990, Evaluation of best Management practices for controlling non-point pollution from silvicultural operations. *Water Resources Bulletin*, **26** (1), 41-52.
- MacKay, SM & Cornish, PM 1982, Effects of Wildfire and Logging on the Hydrology of Small Catchments near Eden, NSW. In *the first national symposium on forest hydrology*, Australian National Conference, Institute of Engineers, Australia, Canberra, pp. 89-92.
- Mapa, RB 1995, Effect of reforestation using Tectona grandis on infiltration and soil water retention. *Forest Ecology* and Management, **77** (1-3), 119-125.
- Martin, CW & Hornbeck, JW 1989, *Revegetation after strip cutting and Block Clearcutting in Northern Hardwoods: A 10-Year History.* Research Paper NE-625, United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Newtown Square, PA.
- McLean, S 2001, 'Baseflow response to Vegetation change, Glendhu State Forest, Otago, New Zealand'. Masters Thesis, Department of Geography, University of Otago, Dunedin.
- Mein, RG, Bieniaszewska-Hunter, H & Papworth, M 1988, Land use changes and the hydrologic water balance -Stewarts Creek Experimental Area. *Hydrology and Water Resources Symposium 1988, 1-3 February 1988,* Australian National University, Canberra.
- Moore, ID, Mackay, SM, Wallbrink, PJ, Burch, GJ & O'Loughlin, EM 1986, Hydrologic characteristics and modelling of a small forested catchment in southeastern New South Wales: Pre-logging condition. *Journal of Hydrology*, 83 (3/4), 307-335.

- Munday, SC, Nathan, RJ, Daamen, CC, & Cornish, PM 2001, Development and application of a model to assess the impact of practical plantation forestry on water yields. In *Proceedings of MODSIM 2001*, Ghassemi F, Whetton P, Little R, and Littleboy M (eds.), Modelling and Simulation Society of Australia and New Zealand: Canberra, pp. 449-454.
- Nakano, H 1967, Effects of changes of forest conditions on water yield, peak flow and direct runoff of small watersheds in Japan. In *Proceedings of the International Symposium on Forest Hydrology*, Pergamon Press, New York, pp.551-564.
- Nandakumar, N 1993, 'Analysis of paired catchment data to predict the hydrological effects of land-use changes'. PhD Thesis, Department of Civil Engineering, Monash University, Melbourne.
- Nandakumar, N & Mein, RG 1997, Uncertainty in rainfall-runoff model simulation and the implications for predicting the hydrologic effects of land-use change. *Journal of Hydrology*, **192** (1-4), 211-232.
- O'Shaughnessy, PJ, Jayasuriya, MDA & Aney, SG 1989, A review of the catchment management policies of tree major water supply authorities with special reference to recent Melbourne Board of Works forest hydrology research results. In *Proceedings of Forest Planning for People*, 18th-22nd September 1989, Leura, New South Wales, Institute of Foresters of Australia, Canberra.
- Oyebande, L 1988, Effects of Tropical forest on water yield. In *Forest Climate and Hydrology, Regional Impacts,* ERC Reynolds & FB Thompson (eds.), The United Nations University, Tokyo.
- Patric, JH & Reinhart 1971, Hydrological effects of deforesting two mountain watersheds in West Virginia. *Water Resources Research*, **7** (5), 1182-1188.
- Peel, MC, McMahon, TA, Finlayson, BL & Watson, FG 2001, Identification and explanation of continental differences in the variability of annual runoff. *Journal of Hydrology*, 250 (1-4), 224-240.
- Putuhena, WM & Cordery, I 2000, Some hydrological effects of changing forest cover from eucalypts to Pinus radiata. *Agricultural and Forest Meteorology*, **100**, 59-72.
- Rich, LR 1972, Managing a ponderosa pine forest to increase water yield. *Water Resources Research*, **8** (2), 422-428.
- Rich, LR & Gottfried, GJ 1976, Water Yields Resulting from Treatments on the Workman Creek Experimental Watersheds in Central Arizona. *Water Resources Research*, **12** (5), 1053-1060.
- Roberts, S 2001, 'Water Yield and Transpiration in Mixed Species Dry Sclerophyll Eucalypt Forests in South Eastern Australia'. (PhD Thesis), The University of Melbourne.
- Roberts, S, Vertessy, R & Grayson, R 2001, Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. *Forest Ecology and Management*, **143**, 153-161.
- Rogerson, TL 1971, *Hydrological characteristics of small headwater catchments in the Ouachita mountains.* Research Note SO-117, United States Department of Agriculture, Forest Service, Southern Forest Experiment Station, Asheville, North Carolina.
- Rothacher, J 1970, Increases in water yield following clear-cut logging in the Pacific Northwest. *Water Resource Research*, **6** (2), 653-658.
- Rowe, LK & Pearce, AJ 1994, Hydrology and related changes after harvesting native forest catchments and establishing Pinus radiata plantations, Part 2: The native forest water balance and changes in streamflow after harvesting. *Hydrological Processes*, 8 (4), 281-297.
- Rowe, LK, Pearce, AJ & O'Loughlin, CL 1994, Hydrology and related changes after harvesting native forest catchments and establishing Pinus radiata plantations, Part 1: Introduction to study. *Hydrological Processes*, 8 (3), 263-279.
- Ruprecht, JK & Schofield, NJ 1989, Analysis of Streamflow Generation Following Deforestation in Southwest Western Australia. *Journal of Hydrology*, **105** (1-2), 1-17.
- Ruprecht, JK & Schofield, NJ 1991a, Effects of Partial Deforestation on Hydrology and Salinity in High Salt Storage Landscapes, I: Extensive Block Clearing. *Journal of Hydrology*, **129** (1/4), 19-38.
- Ruprecht, JK& Schofield, NJ 1991b, Effects of Partial Deforestation on Hydrology and Salinity in High Salt Storage Landscapes, II: Strip, Soils and Parkland Clearing. *Journal of Hydrology*, **129** (1/4), 39-55.
- Ruprecht, JK, Schofield, NJ, Crombie, DS, Vertessy, RA & Stoneman, GL 1991, Early hydrological response to intense forest thinning in southwestern Australia. *Journal of Hydrology*, **127** (1/4), 261-277.

- Sahin, V & Hall, MJ 1996, The effects of afforestation and deforestation on water yields. *Journal of Hydrology*, 178 (1/4), 293-309.
- Schneider, WJ & Ayer, GR 1961, Effect of Reforestation on Streamflow in Central New York. U.S. Geological Survey water-supply paper, 1602, 61p.
- Schofield, NJ 1991, Hydrological response to vegetation changes and its consequences in Western Australia. International Hydrology and Water Resources Symposium, 2-4 October 1991, Perth, National Conference Publication No 91/22, The Institution of Engineers, Australia, Canberra, pp386-391.
- Schofield, NJ 1996, Forest management impacts on water values, *Recent Research Developments in Hydrology*, **1**, 1-20.
- Scott DF, Prinsloo, FW, Moses G, Mehlomakulu, M & Simmers ADA 2000, A re-analysis of the South African afforestation experimental data. WRC Report No. 810/1/00, Water Research Commission, South Africa.
- Scott, DF & Lesch, W 1997, Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. *Journal of Hydrology*, **199** (3-4), 360-377.
- Scott, DF & Smith, RE 1997, Preliminary empirical models to predict reductions in total and low flows resulting from afforestation. *Water South Africa*, **23** (2), 135-140.
- Scott, DF & van Wyk, DB 1990, The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. *Journal of Hydrology*, **121**, 239-256.
- Scott, DF, Maitre, DCL & Fairbanks, DHK 1998, Forestry and streamflow reductions in South Africa: A reference system for assessing extent and distribution. *Water South Africa*, **24** (3), 187-200.
- Sharda, VN, Samraj, P, Chinnamani, S & Lakshmanan, V 1988, Hydrological Behaviour of the Nilgiri Sub-Watersheds as Affected by Bluegum Plantations: Part II. Monthly Water Balances at Different Rainfall and Runoff Probabilities. *Journal of Hydrology*, **103** (3-4), 347-355.
- Sharda, VN, Samraj, P, Samra, JS & Lakshmanan, V 1998, Hydrological behaviour of first generation coppiced bluegum plantations in the Nilgiri sub-watersheds. *Journal of Hydrology*, **211** (1-4), 50-60.
- Smakhtin, VU 1999, A concept of pragmatic hydrological time series modeling and its application in South African context. *Ninth South African National Hydrology Symposium: 29-30 November 1999*, SAHC/IAHS, Bellville, pp. 1-11.
- Smakhtin, VU 2001, Low flow hydrology: a review. Journal of Hydrology, 240 (3-4), 147-186.
- Stednick, JD 1996, Monitoring the effects of timber harvest on annual water yield. *Journal of Hydrology*, **176** (1/4), 79-95.
- Stoneman, GL 1993, Hydrological response to thinning a small jarrah (Eucalyptus marginata) forest catchment. *Journal of Hydrology*, **150** (2/4), 393-407.
- Swank. WT & Crossley, DA 1987, Introduction and site description. In Forest Hydrology and Ecology at Coweeta. WT Swank & DA Crossley (eds.), Springer-Verlag, New York, pp.3-16.
- Swank, WT & Helvey JD 1970, Reduction of streamflow increases following regrowth of clearcut hardwood forest. In Symposium results of research on representative and experimental Basins. Proceedings, IAHS Publication No. 96, Wellington, New Zealand, UNESCO, Paris, pp. 346-360.
- Swank, WT, Swift, LW & Douglass, JE 1987, Streamflow changes associated with forest cutting, species conversions, and Natural Disturbances. In *Forest Hydrology and Ecology at Coweeta*, WT Swank & DA Crossley (eds.), *Springer-Verlag, New York*, pp. 297-312.
- Swank, WT & Miner NH 1968, Conversion of hardwood-covered watersheds to white pine reduces water yield. Water Resources Research, 4, 947-954.
- Thomas, RB & Megahan, WF 1998, Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon: A second opinion. *Water Resources Research*, **34**, 3393-3403.
- Thomas, RB & Megahan, WF 2001, Reply to comment on "Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon: A second opinion. *Water Resources Research*, **37**, 181-183.
- Troendle, CA & King, RM 1985, Effect of Timber Harvest on the Fool Creek Watershed, 30 Years Later. Water Resources Research, 21 (14), 1915-1922.
- Turner, KM 1991, Annual evapotranspiration of native vegetation in a Mediterranean-type climate. *Water Resources Bulletin*, **27** (1), 1-6.



Van Haveren, BP 1988, A reevaluation of the Wagon Wheel Gap Forest Watershed Experiment. *Forest Science*, **34** (1), 208-214.

Van Lill, WS, Kruger, FJ & Van Wyk, DB 1980, The Effect of Afforestation with Eucalyptus Grandis Hill Ex Maiden and Pinus Patula Schlecht. Et Cham. on Streamflow from Experimental Catchments at Mokobulaan, Transvaal. *Journal of Hydrology*, **48** (1/2), 107-118.

Van Wyk, DB 1987, Some Effects of Afforestation on Streamflow in the Western Cape Province, South Africa. *Water South Africa*, **13** (1), 31-36.

 Vertessy, RA 1999, The impacts of forestry on streamflows: a review. In Forest Management for the Protection of Water Quality and Quantity, *Proceedings of the 2nd Erosion in Forests Meeting, Warburton, 4-6 May 1999*, J Croke & P Lane (eds.), Report 99/6, Cooperative Research Centre for Catchment Hydrology, Cooperative Research Centre for Catchment Hydrology, Monash University, Melbourne, pp.93-109.

Vertessy, RA 2000, Impacts of Plantation Forestry on Catchment Runoff. In *Proceedings of Plantations, Farm Forestry and Water, 20-21 July, Melbourne*, EK Sadanandan Nambiar & AG Brown (eds.), Publication No. 01/20, Rural Industries Research and Development Corporation, Canberra, pp. 9-19.

Vertessy, RA & Bessard, Y 1999, Anticipation the negative hydrological effects of plantation expansion: Results from GIS-based analysis on the Murrumbidgee Basin. In Forest Management for the Protection of Water Quality and Quantity, *Proceedings of the 2nd Erosion in Forests Meeting, Warburton, 4-6 May 1999*, J Croke, & P Lane (eds.), Report 99/6, Cooperative Research Centre for Catchment Hydrology, Monash University, Melbourne, pp.69-74.

Vertessy, RA, Watson, FGR & O'Sullivan, SK 2001, Factors determining relations between stand age and catchment water balance in mountain ash forests. *Forest Ecology and Management*, **143** (1-3), 13-26.

Ward, AD & Elliot, WJ 1995, Environmental Hydrology. Lewis Publishers, New York.

- Watson, F, Vertessy, R, McMahon, T, Rhodes, B & Watson, I 2001, Improved methods to assess water yield changes from paired-catchment studies: application to the Maroondah catchments. Forest Ecology and Management, 143 (1-3), 189-204.
- Watson, FGR, Vertessy, RA, McMahon, TA & Watson, IS 1999, The hydrologic impacts of forestry on the Maroondah catchments. Report 99/1, Cooperative Research Centre for Catchment Hydrology, Melbourne.
- Whitehead, PG & Robinson, M 1993, Experimental basin studies—an international and historical perspective of forest impacts. *Journal of Hydrology*, **145** (3/4), 217-230.
- Wilk, J, Andersson, L & Plermkamon, V 2001, Hydrological impacts of forest conversion to agriculture in a large river basin in northeast Thailand. *Hydrological Processes*, **15** (14), 2729-2748.
- Wright, KA, Sendek, KH, Rice, RM & Thomas, RB 1990, Logging effects on streamflow: Storm runoff at Caspar Creek in Northwestern California. Water Resources Research, 26 (7), 1657-1667.
- Zhang, L, Dawes, WR & Walker, GR 1999, Predicting the effect of vegetation changes on catchment average water balance. Report 99/12, Cooperative Research Centre for Catchment Hydrology, Melbourne.
- Zhang, L, Dawes, WR & Walker, GR 2001, Response of mean annual evapotranspiration to vegetation changes at catchment scale. *Water Resources Research*, **37** (3), 701-708.



|                                    |              |                                    |                       | TREATE                                                 | TREATED CATCHMENT           | Ę                               |                            |                                                |            |                |                                  |                       |                                 | CO                                    | CONTROL CATCHMENT                                                                                                                           |             |                                |
|------------------------------------|--------------|------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------|---------------------------------|----------------------------|------------------------------------------------|------------|----------------|----------------------------------|-----------------------|---------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|
|                                    |              |                                    |                       |                                                        |                             |                                 | Mean                       | Mean                                           |            |                |                                  |                       | Mean                            | Mean                                  |                                                                                                                                             |             |                                |
| Catchment                          | Area<br>(ha) | Mean<br>Slope Elevation<br>(%) (m) | un<br>ation<br>Asnect | Climate                                                | Pre Treatment<br>Venetation | Post<br>Treatment<br>Venetation | Annual<br>Rainfall<br>(mm) | Annual<br>Streamflow Catchment<br>(mm) Control |            | Area S<br>(ha) | Mean<br>Slope Elevati<br>(%) (m) | Б                     | Control Rainfall<br>Aspect (mm) | al Annual<br>all Streamflow<br>(mm)   | low<br>Treatment                                                                                                                            | Calibration | Source of info                 |
| Karuah. NSW. Australia             | Australia    |                                    |                       |                                                        |                             |                                 |                            |                                                |            |                |                                  |                       |                                 |                                       |                                                                                                                                             |             |                                |
| Barratta                           | 36.4         |                                    |                       |                                                        |                             |                                 | 1577 <sup>2</sup>          | 588 <sup>2</sup>                               |            |                |                                  |                       |                                 |                                       | Logging without<br>regeneration burn                                                                                                        | 1976-1983   |                                |
| Bollygum                           | 15.1         |                                    |                       |                                                        |                             |                                 | 1499 <sup>2</sup>          | 500 <sup>2</sup>                               |            |                |                                  |                       |                                 |                                       | Logging without<br>regeneration burn                                                                                                        | 1976-1983   |                                |
| Coachwood                          | 37.5         | 4 EO 0 40 <sup>1</sup>             | 1010                  | Moist warm                                             |                             | dimension                       | 1444 <sup>2</sup>          | 373 <sup>2</sup> C                             | /          | 14.7/          | 450-9                            | 450-940m <sup>1</sup> | 1637/1429 <sup>2</sup>          | 129 <sup>2</sup> 456/307 <sup>2</sup> |                                                                                                                                             | 1976-1983   | Cornish (1993);                |
| Corkwood                           | 41.1         | -004                               | 440                   | climate.                                               | forest                      | Regiowin                        | 1639 <sup>2</sup>          | 503 <sup>2</sup> S                             |            | 25.3           |                                  |                       |                                 |                                       | Logging plus<br>regeneration burn                                                                                                           | 1976-1983   | Cornish and<br>Vertessy (2001) |
| Jackwood                           | 12.5         |                                    |                       |                                                        |                             |                                 | 1368 <sup>2</sup>          | 313 <sup>2</sup>                               |            |                |                                  |                       |                                 |                                       | Logging plus<br>regeneration burn                                                                                                           | 1976-1983   |                                |
| Kokata                             | 97.4         |                                    |                       |                                                        |                             |                                 | 1562 <sup>2</sup>          | 518 <sup>2</sup>                               |            |                |                                  |                       |                                 |                                       | Plantation established<br>after tractor clearing                                                                                            | 1976-1983   |                                |
| Lidsdale, NSW, Australia           | V, Austra    | lia                                |                       |                                                        |                             |                                 |                            |                                                |            |                |                                  |                       |                                 |                                       |                                                                                                                                             |             |                                |
| L-6                                | 9.4          | 12                                 | SW                    | V Sub Tropical                                         | Eucalypt Forest             | Pinus<br>Radiata                | 755                        |                                                | L-5        |                |                                  |                       |                                 |                                       | Feb 1976 100% cleared<br>and windrowed, and then<br>burnt in April 1978.<br>During winter 1978<br>catchment was planted<br>with P. radiata. | 1967-1978   | Putuhena and<br>Cordery (2000) |
| Tantawangalo Creek, NSW, Australia | Creek, I     | VSW, Austra                        | alia                  |                                                        |                             |                                 |                            |                                                |            |                |                                  |                       |                                 |                                       |                                                                                                                                             |             |                                |
| Willbob                            | 85.6         |                                    |                       | Regional rainfall                                      | Good                        |                                 |                            |                                                |            |                |                                  |                       |                                 |                                       | 30% of area logged                                                                                                                          | 1986-1989   | Lane et al. (2001)             |
| Wicksend                           | 68.2         | 800-9501                           | 950 <sup>1</sup>      | uniform<br>throughout the                              | Sclerophyll<br>forest       | Regrowth                        | 1100                       |                                                | Ceb        | 21.7           |                                  |                       | 1100                            |                                       | 38% of area logged                                                                                                                          | 1986-1989   | Lane et al. (2001)             |
| Tumut, NSW,<br>Australia           |              |                                    |                       | Temperate with                                         |                             |                                 |                            |                                                |            |                |                                  |                       |                                 |                                       | 50ha afforactad in 1088                                                                                                                     |             |                                |
| Redhill                            | 195          | 6                                  |                       | highly variable<br>and winter<br>dominant<br>rainfall. | Pasture                     | Pines                           | 876                        |                                                | Kylies Run | 135            | 12                               |                       | 876                             |                                       | and the remaining area<br>(145ha) afforested in<br>1989                                                                                     | None        | Hickel (2001)                  |

<sup>1</sup> Elevation Range <sup>2</sup> Pre-treatment mean (1976/77 to 1982/83)

|                   | Source of info                       | MacKay and Cornish<br>MacKay and Cornish<br>(1982); Moore et al.<br>(1988): Crapper et<br>al. (1989); Roberts et al.<br>(2001); Roberts et al.<br>(2001)                                                                                                                                                                                  | Cassells et al.<br>(1982): Gilmore et<br>al. (1982): Bonell et<br>al. (1983): Cassells<br>et al. (1985) | Lawrence and<br>Sinclair (1986);<br>Lawrence and<br>Thorburn (1989)           | Bren and Papworth<br>(1991)                                                                                         |
|-------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                   | Calibration<br>period                | 1979-1986<br>1977-1979<br>1977-1978<br>1977-1978                                                                                                                                                                                                                                                                                          | 1969-1971                                                                                               | 1965-1983<br>1965-1983                                                        | 1975-1979                                                                                                           |
| CONTROL CATCHMENT | Treatment                            | Integrated Harvest (Jan -<br>April 1887)<br>Post Logging Burn<br>(June-July, 1987)<br>Wild Fire - Jan 1979<br>Integrated Harvest (Dec<br>1986 - June 1987)<br>Wildfire - Jan 1979<br>May 1978-Jane 1979)<br>May 1978-Jane 1979<br>Midfire - Jan 1979<br>Wildfire - Jan 1979<br>Wildfire - Jan 1979<br>Salvage Logging: June<br>- Dec 1979 | 1971-1973 67% area<br>logged, cleared raked<br>and ploughed; bare 2<br>years                            | Cropping 1985<br>Pasture 1983                                                 | December 1979<br>vegetation removed<br>leaving 30m buffer strip<br>around stream. Area<br>planted with radiata pine |
| CONTI             | Mean<br>Annual<br>Streamflow<br>(mm) |                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | 20                                                                            |                                                                                                                     |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   | 006                                                                                                                                                                                                                                                                                                                                       |                                                                                                         | 669                                                                           | 1400                                                                                                                |
|                   | Control<br>Aspect                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                               | ш                                                                                                                   |
|                   | Mean<br>Elevation<br>(m)             |                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                               |                                                                                                                     |
|                   | Slope<br>(%)                         |                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                               |                                                                                                                     |
|                   | Area<br>(ha)                         | 75.9                                                                                                                                                                                                                                                                                                                                      | 25.7                                                                                                    | 16.8<br>16.8                                                                  | 113.0                                                                                                               |
|                   | w Catchment<br>Control               | Pomaderris<br>Creek                                                                                                                                                                                                                                                                                                                       | South Creek                                                                                             | 5 5                                                                           | Ella<br>Creek/Betsy<br>Creek                                                                                        |
|                   | Mean<br>Annual<br>Streamflow<br>(mm) |                                                                                                                                                                                                                                                                                                                                           | 2873                                                                                                    | 39                                                                            |                                                                                                                     |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   | 00                                                                                                                                                                                                                                                                                                                                        | 4239                                                                                                    | 686<br>695                                                                    | 1400                                                                                                                |
| TN                | Post<br>Treatment<br>Vegetation      | Regrowth                                                                                                                                                                                                                                                                                                                                  |                                                                                                         | Crops<br>Pasture                                                              | Pinus<br>Radiata                                                                                                    |
| TREATED CATCHMENT | Pre Treatment<br>Vegetation          | Dry<br>Sclerophyll<br>forest                                                                                                                                                                                                                                                                                                              | Mesophyll vine<br>forest                                                                                | Native<br>Brigalow<br>forest.                                                 | Dry sclerophyll<br>eucalypt forest                                                                                  |
| TREATE            | Climate                              | Yambula State Forest, NSW, AustraliaGeebung80.2Totek157-3313ETemperate rainyCreek230-4763Peppermint127.5Creek92.5Creek92.5Creek140Creek230-4763Creek230-4763Creek230-4763Creek230-4763Creek225.1Creek230-4763Creek225.1Creek230-4763Myruri experimental catchments, Babinda, Queensland, Australia                                        | alia                                                                                                    | subhumid on the<br>coast and<br>extending to<br>semi arid<br>towards the west |                                                                                                                     |
|                   | Aspect                               | E<br>Finda, Que                                                                                                                                                                                                                                                                                                                           | W<br>W<br>Austra                                                                                        |                                                                               | ш                                                                                                                   |
|                   | Mean<br>Slope Elevation<br>(%) (m)   | <b>Australia</b><br>157-331 <sup>3</sup><br>230-476 <sup>3</sup><br>230-476 <sup>3</sup><br>230-476 <sup>3</sup>                                                                                                                                                                                                                          | ueensland                                                                                               |                                                                               | tralia                                                                                                              |
|                   | Slope<br>(%)                         | NSW,                                                                                                                                                                                                                                                                                                                                      | 34<br>ation, G                                                                                          |                                                                               | ia, Aus                                                                                                             |
|                   | Area<br>(ha)                         | <ul> <li>Forest,</li> <li>80.2</li> <li>92.5</li> <li>140</li> <li>225.1</li> <li>mental c</li> </ul>                                                                                                                                                                                                                                     | 18.3<br>arch Ste                                                                                        | 11.7<br>12.7                                                                  | <b>c, Victori</b><br>46.4                                                                                           |
|                   | Catchment                            | Yambula State Forest, NSW, AustraliaGeebung80.2157-3313Greek80.2757-3313Creek127.5230-4763Creek92.5230-4763Grewillea92.5230-4763Creek140230-4763Creek225.1230-4763Creek225.1230-4763Wywuri experimental catchments, Bab                                                                                                                   | North Creek 18.3 34 W Brigalow Research Station, Queensland, Australia                                  | 3 3                                                                           | Cropper Creek, Victoria, Australia<br>Clem Creek                                                                    |

<sup>3</sup> Elevation Range

|                   |                | Source of info              |                                                        | O'Shaughnessy et                                 | a. (1707),<br>Jayasuriya and<br>O'Shaughnessy            | (1988); Nandakumar<br>(1993); Watson et al.<br>(1999); Watson et al.<br>(2001) |                                                                     | Watson et al. (1999);<br>Watson et al. (2001) |                                                                       | Jayasuriya and<br>O'Shaughnessy<br>(1998); Watson et al.<br>(1999); Watson et al.<br>(2001)                                                |                                                                                                                    | Watson et al. (1999);<br>Watson et al. (2001)                                                                             |                                                                                   |
|-------------------|----------------|-----------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                   | :              | Calibration                 |                                                        | 71/72-75/76<br>(4 Years)                         | 1/7/1970-<br>20/12/1976                                  | 1-7-1970 -<br>14-3-1977                                                        | 28/7/1971-<br>Jan1982                                               | 5/8/1971-<br>1979                             | 15-7-1971 -<br>Jan-1982                                               | 11-6-1970 -<br>5-12-1978                                                                                                                   | 11/6/1970-<br>5/12/1977                                                                                            | 11/8/1970-<br>5/12/1977                                                                                                   | 13/7/1971-<br>4/12/1984                                                           |
| CONTROL CATCHMENT |                | Treatment                   |                                                        | 50% Basal area removed<br>by clear felling small | parenes<br>40% Basal area removed<br>by uniform thinning | 50% uniform thinning<br>(14-3-1977 - 2-5-1977)                                 | Jan-1982 to Mar 1982<br>39% strip thinning<br>Understorev removed - | 1979<br>Infested with Psyllids -              | 1998<br>35% strip thinned Jan<br>1982-Mar-1982<br>79% clearfelled and | regenerated with 2000<br>seedlings /ha<br>5/1 2/77-26/4/78<br>clearfelled<br>20/3/78 - burnt<br>17.5-78 - Seedlings<br>75% crearfelled and | regenerated with 5000<br>seedlings/ha<br>5/12/1977-26/4/1978<br>clearfelled<br>6/3/1978 Burnt<br>17/5/1978 Planted | 5/12/1977-26/4/1978<br>80% clearfelled and<br>regenerated with 500<br>seedlings/ha<br>21/4/1978 Burnt<br>2/5/1028 Dianted | 74% clearfieled<br>4/12/1984-9/3/1985<br>Burnt - 20/3/1985<br>Seeded. Winter 1985 |
| CONTR             | Mean<br>Annual | Streamtlow<br>(mm)          |                                                        |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | Mean<br>Annual | Kaintall<br>(mm)            |                                                        | 1662                                             | 1662                                                     | 1662                                                                           |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   |                | Control<br>Aspect           |                                                        |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | Mean           | Elevation<br>(m)            |                                                        |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | i              | Slope<br>(%)                |                                                        | 17.2                                             | 17.2                                                     | 17.2                                                                           |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   |                | Area<br>(ha)                |                                                        | 9.8                                              | 9.8                                                      | 9.8                                                                            | 15.01                                                               | 15.01                                         | 15.01                                                                 | 6.31                                                                                                                                       | 6.31                                                                                                               | 6.31                                                                                                                      | 25.21                                                                             |
|                   |                | v Catchment<br>Control      |                                                        | Black Spur 4                                     | Black Spur 4                                             | Black Spur 4                                                                   | Ettercon 3                                                          | Ettercon 3                                    | Ettercon 3                                                            | Monda 4                                                                                                                                    | Monda 4                                                                                                            | Monda 4                                                                                                                   | Myrtle 1                                                                          |
|                   | Mean<br>Annual | Streamtlow<br>(mm)          |                                                        |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | Mean<br>Annual | Kaintall<br>(mm)            |                                                        | 1662                                             | 1662                                                     | 1662                                                                           |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
| L                 | Post           | Ireatment<br>Vegetation     |                                                        | Regrowth                                         | Regrowth                                                 | Regrowth                                                                       | Regrowth                                                            | Regrowth                                      | Regrowth                                                              | Regrowth                                                                                                                                   | Regrowth                                                                                                           | Regrowth                                                                                                                  | Regrowth                                                                          |
| TREATED CATCHMENT |                | Pre Ireatment<br>Vegetation |                                                        |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           | 1759 E.<br>Regnans                                                                |
| TREATE            |                | Climate                     | Australia                                              |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       | Mediterranean -<br>cool wet winters<br>and hot dry<br>summers                                                                              |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   |                | Aspect                      | Victoria,                                              | SW                                               | SE                                                       | SE                                                                             |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | Mean           | Slope Elevation<br>(%) (m)  | tal Area,                                              |                                                  |                                                          |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   | i              | Slope<br>(%)                | eriment                                                | 7.1                                              | 14.6                                                     |                                                                                |                                                                     |                                               |                                                                       |                                                                                                                                            |                                                                                                                    |                                                                                                                           |                                                                                   |
|                   |                | Area<br>(ha)                | dah exp                                                | 17                                               | 9.6                                                      | 7.7                                                                            | 11.67                                                               | 8.83                                          | 9.03                                                                  | 6.31                                                                                                                                       | 3.98                                                                                                               | 7.25                                                                                                                      | 30.8                                                                              |
|                   |                | Catchment                   | North Maroohdah experimental Area, Victoria, Australia | Black Spur 1                                     | Black Spur 2                                             | Black Spur 3                                                                   | Ettercon 1                                                          | Ettercon 2                                    | Ettercon 4                                                            | Monda 1                                                                                                                                    | Monda 2                                                                                                            | Monda 3                                                                                                                   | Myrtle 2                                                                          |

|                   |      | Source of info                  |                                                   | Watson et al. (1999);<br>Nandakumar (1993);<br>Nandakumar and<br>Mein (1997); | Watson et al. (1999);<br>Nandakumar (1993);<br>Nandakumar and<br>Mein (1997); |                                     | Mein et al. (1988).                                            | Nandakumar (1993)                                                                          |                                               | Nandakumar (1993)                                                                           | Nandakumar (1993)                                                                   | Nandakumar (1993)                                                                           | Nandakumar (1993)                                                                   |                                                | Nandakumar (1993);                                                      | Nandakumar (1993);                                                    |
|-------------------|------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                   |      | Calibration<br>period           |                                                   | 11/8/1958-<br>8/11/1972                                                       | 7/3/1956-<br>16/11/1971                                                       |                                     | 1960-1969                                                      | 1960-1969                                                                                  |                                               | 1954-1959                                                                                   | 1954-1959                                                                           | 1954-1959                                                                                   | 1954-1959                                                                           |                                                | 1971-1980                                                               | 1971-1980                                                             |
| CONTROL CATCHMENT |      | Treatment                       |                                                   | Selective cut Nov 1972-<br>Mar 1973                                           | Clearfeiling of 85% of<br>vegetation in Nov 1971-<br>Apr 1972                 |                                     | Cleared 1969, Bare<br>Ground: April 1969-<br>1975 Pasture 1976 | Cleared May 1969, Bare<br>ground: April 1969-<br>1970. Growing Pine<br>forest: April 1970- |                                               | Native Pasture (1954-<br>1959) Regeneration of<br>woodland (1959-1968)<br>Grazing (1968-74) | Native Pasture (1954-<br>1959) Improved Pasture<br>(1959-1968) Grazing<br>(1968-74) | Native Pasture (1954-<br>1959) Regeneration of<br>woodland (1959-1968)<br>Grazing (1968-74) | Native Pasture (1954-<br>1959) Improved Pasture<br>(1959-1968) Grazing<br>(1968-74) |                                                | Native forest until 1984,<br>20% of the forest cleared<br>in April 1984 | Native Forest until April<br>1984. Understorey burnt<br>in April 1984 |
| CONTR             | Mean | Annual<br>Streamflow<br>(mm)    |                                                   |                                                                               |                                                                               |                                     |                                                                |                                                                                            |                                               |                                                                                             |                                                                                     |                                                                                             |                                                                                     |                                                | 209<br>234                                                              | 228<br>318                                                            |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                                                   |                                                                               |                                                                               |                                     | 1400 (1960-<br>1967)                                           | 1120 (1960-<br>1980)                                                                       |                                               | 538                                                                                         | 538                                                                                 | 538                                                                                         | 538                                                                                 |                                                | 1265<br>1249                                                            | 1308<br>1440                                                          |
|                   |      | Control<br>Aspect               |                                                   | S                                                                             | S                                                                             |                                     | NE                                                             | MN                                                                                         |                                               | z                                                                                           | z                                                                                   | S                                                                                           | S                                                                                   |                                                | NW<br>SW                                                                | s v                                                                   |
|                   |      | Mean<br>Elevation<br>(m)        |                                                   |                                                                               |                                                                               |                                     |                                                                |                                                                                            |                                               |                                                                                             |                                                                                     |                                                                                             |                                                                                     |                                                | 596<br>594                                                              | 651<br>651                                                            |
|                   |      | Slope<br>(%)                    |                                                   | 40.3                                                                          | 40.3                                                                          |                                     | 9.0                                                            | 6.0                                                                                        |                                               |                                                                                             |                                                                                     |                                                                                             |                                                                                     |                                                | <del>م</del> ی                                                          |                                                                       |
|                   |      | Area<br>(ha)                    |                                                   | 62.3                                                                          | 62.3                                                                          |                                     | 4.3                                                            | 25.3                                                                                       |                                               | 1.6                                                                                         | 1.6                                                                                 | 1.6                                                                                         | 1.6                                                                                 |                                                | 95.1<br>107.2                                                           | 156.2<br>521.2                                                        |
|                   |      | w Catchment<br>Control          |                                                   | Slip                                                                          | Slip                                                                          |                                     | CA1                                                            | CA4                                                                                        |                                               | Parwan 3                                                                                    | Parwan 3                                                                            | Parwan 5                                                                                    | Parwan 5                                                                            |                                                | Dooffon 2.6                                                             |                                                                       |
|                   | Mean | Annual<br>Streamflow<br>(mm)    |                                                   |                                                                               |                                                                               |                                     |                                                                |                                                                                            |                                               |                                                                                             |                                                                                     |                                                                                             |                                                                                     |                                                | 180                                                                     | 258                                                                   |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                                                   |                                                                               |                                                                               |                                     | 1120<br>(1960-<br>1980)                                        | 1120<br>(1960-<br>1980)                                                                    |                                               | 538                                                                                         | 538                                                                                 | 538                                                                                         | 538                                                                                 |                                                | 1233                                                                    | 1250                                                                  |
| Łz                |      | Post<br>Treatment<br>Vegetation |                                                   | Regrowth                                                                      | Regrowth                                                                      |                                     | Bare ground<br>(1969-1975)<br>Pasture<br>1976-<br>Bare         | ground:<br>June 1969-<br>April 1970.<br>Pines: April<br>1970                               |                                               | woodland                                                                                    | improved<br>pasture                                                                 | woodland                                                                                    | improved<br>pasture                                                                 |                                                | Regrowth                                                                | Regrowth                                                              |
| TREATED CATCHMENT |      | Pre Treatment<br>Vegetation     |                                                   | 1850 E.<br>Regnans & E.<br>Obliqua                                            | 1850 E.<br>Regnans & E.<br>Obliqua                                            |                                     | Mixed Species<br>Encalvot forest                               |                                                                                            |                                               | Native Pasture                                                                              | Native Pasture                                                                      | Native Pasture                                                                              | Native Pasture                                                                      |                                                | Native<br>Eucalypt forest                                               | Native<br>Eucalypt forest                                             |
| TREATE            |      | Climate                         | lia                                               | Mediterranean -<br>cool wet winters<br>and hot dry<br>summers                 | Mediterranean -<br>cool wet winters<br>and hot dry<br>summers                 |                                     | Mediterranean -                                                | and hot dry<br>summers                                                                     |                                               |                                                                                             | Mediterranean                                                                       | type climate                                                                                |                                                                                     |                                                | Mediterranean<br>Type climate                                           | Mediterranean<br>Type climate                                         |
|                   |      | ר<br>Aspect                     | a. Austral                                        | SW                                                                            | S                                                                             |                                     | NE                                                             | MN                                                                                         | ustralia                                      | z                                                                                           | z                                                                                   | S                                                                                           | S                                                                                   | lustralia                                      | z                                                                       | 3                                                                     |
|                   |      | Mean<br>Elevation<br>(m)        | a. Victoria                                       |                                                                               |                                                                               | tralia                              |                                                                |                                                                                            | Tctoria, A                                    |                                                                                             |                                                                                     |                                                                                             |                                                                                     | lictoria, A                                    | 559                                                                     | 588                                                                   |
|                   |      | Slope<br>(%)                    | ntal are                                          | 36.6                                                                          | 37.8                                                                          | ria, Aus                            | 8.3                                                            | 7.6                                                                                        | Area, V                                       |                                                                                             |                                                                                     |                                                                                             |                                                                                     | I Area, V                                      | 9                                                                       | 12                                                                    |
|                   |      | Area<br>(ha)                    | vperime                                           | 64.8                                                                          | 52.8                                                                          | sk, Victo                           | 4.0                                                            | 17.6                                                                                       | rimental                                      | 1.6                                                                                         | 1.6                                                                                 | 1.6                                                                                         | 1.6                                                                                 | rimenta                                        | 70.4                                                                    | 76.1                                                                  |
|                   |      | Catchment                       | Coranderrk experimental area. Victoria. Australia | Blue Jacket                                                                   | Piccaninny                                                                    | Stewarts Creek, Victoria, Australia | CA2                                                            | CA5                                                                                        | Parwan Experimental Area, Victoria, Australia | Parwan 1                                                                                    | Parwan 2                                                                            | Parwan 4                                                                                    | Parwan 5                                                                            | Reefton Experimental Area, Victoria, Australia | Reefton 1                                                               | Reefton 2                                                             |

|                   |                              | Source of info |                                       | Ruprecht and<br>Schofield (1991b)                                                         | Ruprecht and<br>Schofield (1991a)                           | Ruprecht and<br>Schofield (1989)                  | Borg et al. (1988)                   |                                      | Bari et al. (1996)                                                                      |                       |                                   | Ruprecht and<br>Schofield (1989)              |                                                                        | Stoneman (1993)                          | Ruprecht and<br>Schofield (1989)               | Runrecht et al                                                 | (1661)                                                                |
|-------------------|------------------------------|----------------|---------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------------------|-----------------------------------------------|------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|
|                   | ocitoradilo C                | period         |                                       | 1974-1976                                                                                 | 1974-1976                                                   | 1974-1976<br>1078 1080                            | (first 3 years<br>since              | <u>_</u>                             | 1976-1982                                                                               |                       | 1982-1985                         |                                               | 1977-1981                                                              |                                          | 1982-1985                                      |                                                                | 1978-1984                                                             |
| CONTROL CATCHMENT |                              | Treatment      |                                       | Clearing of native forest<br>by strip clearing, soil<br>clearing and parkland<br>clearing | 53.5 % of catchment<br>cleared between<br>November 1976 and | March 1977<br>100% cleared in Summer<br>1976-1977 | Afforestations                       | Cleared January 1982 -<br>March 1983 | Nursery raised karri<br>seedlings were hand-<br>planted in the same year<br>of logging. | Clear felling leaving | 100m butters<br>Selection cut and | Selection cut and<br>regeneration. Basal area | reduced from 16 m^3/ha<br>to 11m^3/ha. Crown<br>cover reduced from 55% | to 22%<br>80% of canopy cover<br>removed | Logging leaving 50m<br>buffer and regeneration | 1985-86 intensive<br>uniform thinning<br>treatment was annlied | across the catchment<br>excluding the swamp and<br>a 50m buffer strip |
| CONTH             | Mean<br>Annual<br>Stroomfouu | (mm)           |                                       |                                                                                           |                                                             |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        |                                          |                                                |                                                                |                                                                       |
|                   | Mean<br>Annual<br>Doinfoil   | (mm)           |                                       | 720                                                                                       |                                                             |                                                   | 950/950                              |                                      | 1050                                                                                    |                       |                                   |                                               |                                                                        |                                          |                                                |                                                                |                                                                       |
|                   | Control                      |                |                                       |                                                                                           |                                                             |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        | SE                                       |                                                |                                                                |                                                                       |
|                   | Mean                         |                |                                       |                                                                                           |                                                             |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        |                                          |                                                |                                                                |                                                                       |
|                   |                              | (%)            |                                       | 0                                                                                         |                                                             |                                                   | 0                                    |                                      |                                                                                         |                       |                                   |                                               |                                                                        | 0 3.1                                    |                                                |                                                                |                                                                       |
|                   |                              | (ha)           |                                       | 270                                                                                       |                                                             |                                                   | 1020<br>10w 0/101<br>0               |                                      | 1 248                                                                                   |                       | ţ                                 |                                               |                                                                        | < 270                                    | dn                                             |                                                                | 80                                                                    |
|                   | Catchmont                    |                |                                       | Ernie                                                                                     |                                                             | Salmon                                            | Thomson<br>Brook/Ludlow<br>River     |                                      | April Road<br>South                                                                     |                       | Lewin North                       |                                               |                                                                        | Yarragil 4X                              | Yarraminnup<br>North                           |                                                                | Lewis                                                                 |
|                   | Mean<br>Annual<br>Stroomfort | (mm)           |                                       |                                                                                           |                                                             |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        | 4.3                                      |                                                |                                                                |                                                                       |
|                   | Mean<br>Annual<br>Daiofall   | (mm)           |                                       | 720                                                                                       | 750                                                         | 1200                                              | 880                                  |                                      | 1050                                                                                    | 1070                  | 1220                              |                                               |                                                                        | 1120                                     | 850                                            |                                                                |                                                                       |
| Ę                 | Post                         | Vegetation     |                                       | Agriculture                                                                               | Agriculture                                                 | Agriculture                                       | Agriculture                          |                                      | E.<br>diversicolor                                                                      | regrowth              | regrowth                          |                                               | regrowth                                                               | regrowth                                 | regrowth                                       |                                                                |                                                                       |
| TREATED CATCHMENT | Dro Trootmont                | Vegetation     |                                       | Eucalypt Forest                                                                           | Eucalypt Forest Agriculture                                 | Eucalypt Forest                                   | Jarrah<br>(Eucalyptus.<br>marainata) | Native forest                        | E. marginata<br>and E.<br>calophylla and<br>E. diversicolor                             | Eucalypt Forest       | Eucalypt Forest                   |                                               | Eucalypt Forest                                                        | Eucalypt Forest                          | Eucalypt Forest                                |                                                                | Eucalypt Forest                                                       |
| TREATE            |                              | Climate        |                                       |                                                                                           |                                                             |                                                   |                                      |                                      | Mediterranean                                                                           | climate               |                                   |                                               |                                                                        |                                          |                                                |                                                                |                                                                       |
|                   |                              | Aspect         |                                       |                                                                                           |                                                             |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        | S                                        |                                                |                                                                |                                                                       |
|                   | Mean                         | (%) (m)        | Australia                             |                                                                                           |                                                             |                                                   |                                      |                                      | 170-<br>230m                                                                            |                       |                                   |                                               |                                                                        |                                          |                                                |                                                                |                                                                       |
|                   |                              |                | lestern ,                             |                                                                                           | œ                                                           |                                                   |                                      |                                      |                                                                                         |                       |                                   |                                               |                                                                        | 2.0                                      |                                                |                                                                |                                                                       |
|                   | Aroc                         | (ha)           | Basin, M                              |                                                                                           | 344                                                         | 94                                                | 93.3                                 |                                      | 261                                                                                     |                       |                                   |                                               |                                                                        | 126                                      |                                                |                                                                | 08                                                                    |
|                   |                              | Catchment      | Collie River Basin, Western Australia | Dons                                                                                      | Lemons                                                      | Wights                                            | Balingup<br>Brook<br>Tributary       |                                      | March Road                                                                              | April Road            | North<br>Lewin South              |                                               | Wellbucket                                                             | Yarragil 4L                              | Yerraminnup<br>S                               |                                                                | Hansen                                                                |

|                   | Source of info                       |       | Oyebande (1988)                           | Sharda et al. (1988);<br>Sharda et al. (1998)                                                                                                                       |          | Bosch and Hewlett<br>(1982)                 | Nakano (1967)                                                               |       | Oyebane (1988)<br>Ovebane (1988)                               |         | Fahey and Jackson                                                                                   | (1997)                                                                                                                            |
|-------------------|--------------------------------------|-------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------|-----------------------------------------------------------------------------|-------|----------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                   | Calibration<br>period                |       |                                           | 1968-1972                                                                                                                                                           |          |                                             | 1940-1947                                                                   |       |                                                                |         | 1975-1980                                                                                           | 1975-1980                                                                                                                         |
| CONTROL CATCHMENT | Treatment                            |       |                                           | Conversion from natural<br>grassland to Bluegum<br>plantation (rotation 10<br>years). Blue gum<br>harvested in 1982<br>followed by a second<br>rotation of coppiced | pluegum. | 1948-1954 - 50%<br>volume selected cutting  | 100% clear felled Dec<br>1947                                               |       | 1959-1963 87% Cut for<br>tea garden<br>1956 100% cleared, pine | planted | 83% of area skidder-<br>logged between April<br>and December 1980.<br>P.radiata planted May<br>1981 | 94% createned and<br>harvested by hauler<br>between May 1980 and<br>June 1981, Planted with<br>Pinus radiata in<br>September 1981 |
| CONTR             | Mean<br>Annual<br>Streamflow<br>(mm) |       |                                           |                                                                                                                                                                     |          |                                             |                                                                             |       |                                                                |         |                                                                                                     |                                                                                                                                   |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   |       |                                           | 1380                                                                                                                                                                |          |                                             |                                                                             |       |                                                                |         |                                                                                                     |                                                                                                                                   |
|                   | Control<br>Aspect                    |       |                                           |                                                                                                                                                                     |          |                                             |                                                                             |       |                                                                |         | WIN                                                                                                 |                                                                                                                                   |
|                   | Mean<br>Elevation<br>(m)             |       |                                           |                                                                                                                                                                     |          |                                             |                                                                             |       |                                                                |         | C                                                                                                   | 0cc                                                                                                                               |
|                   | Slope<br>(%)                         |       |                                           |                                                                                                                                                                     |          |                                             |                                                                             |       |                                                                |         |                                                                                                     |                                                                                                                                   |
|                   | Area<br>(ha)                         |       |                                           | A 32                                                                                                                                                                |          |                                             |                                                                             |       |                                                                |         |                                                                                                     | 4.7.4                                                                                                                             |
|                   | low Catchment<br>Control             |       |                                           | Glenmorgan A                                                                                                                                                        |          |                                             | No.1                                                                        |       |                                                                |         | Ę                                                                                                   | 0.72                                                                                                                              |
|                   | Mean<br>Annual<br>Streamflow<br>(mm) |       |                                           |                                                                                                                                                                     |          | 1783                                        | 2075                                                                        |       | 789<br>1104                                                    |         |                                                                                                     |                                                                                                                                   |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   |       | 1167                                      | 1380                                                                                                                                                                |          | 2153                                        | 2617                                                                        |       | 2236<br>2198                                                   |         | 1530                                                                                                |                                                                                                                                   |
| T                 | Post<br>Treatment<br>Vegetation      |       | E. grandis<br>and E.<br>camaldulens<br>is | Bluegum<br>Rotation 1<br>then<br>Bluegum<br>rotation 2                                                                                                              |          |                                             | Restricted<br>regrowth                                                      |       | tea<br>Pine                                                    |         | Pinus                                                                                               | radiata                                                                                                                           |
| TREATED CATCHMENT | Pre Treatment<br>Vegetation          |       | Derived scrub<br>with sal<br>seedlings    | Grassland                                                                                                                                                           |          | 60% hardwood,<br>40% conifers<br>Artificial | forest, standing<br>as groups in<br>hardwood<br>stand, with<br>dense ground | cover | Montane forest<br>with bamboo<br>Bamboo forest                 |         | Mixed<br>evergreen<br>native forest                                                                 | remnants and<br>plantations of<br>exotic species                                                                                  |
| TREATE            | Climate                              |       |                                           | montane<br>temperate humid Grassland<br>climate                                                                                                                     |          |                                             |                                                                             |       |                                                                |         | Evenly<br>distributed<br>rainfall<br>throughout the                                                 | year, mean<br>annual<br>temperature of<br>10.5 DegC                                                                               |
|                   | n<br>Aspect                          |       | SE                                        |                                                                                                                                                                     |          | SW                                          | SE                                                                          |       | MN S                                                           |         | MN                                                                                                  | MN                                                                                                                                |
|                   | Mean<br>Elevation<br>(m)             |       |                                           |                                                                                                                                                                     |          | 1067                                        |                                                                             |       | 2200<br>2438                                                   |         | 550                                                                                                 | 550                                                                                                                               |
|                   | Slope (%)                            |       | 5.1                                       |                                                                                                                                                                     |          |                                             | 36                                                                          |       | 4.5                                                            | _       | and                                                                                                 |                                                                                                                                   |
|                   | Area<br>(ha)                         |       | 1.45                                      | 32                                                                                                                                                                  |          | - 118                                       | 2.48                                                                        |       | 702                                                            | _       | ew Zeal:<br>8.57                                                                                    | 20.19                                                                                                                             |
|                   | Catchment                            | India | Doon Valley                               | Glenmorgan<br>B                                                                                                                                                     | Japan    | Takaragawa-<br>Shozawa                      | Kamabuchi<br>No. 2                                                          | Kenva | Kericho<br>Sambret<br>Kimakia                                  |         | Big Bush, New Zealand<br>DC1 8.57                                                                   | DC4                                                                                                                               |

|                          |      |        | Source of info              |                                   | McLean (2001);<br>Fahey and Jackson<br>(1997)                                                                                |                               |                                                 | Rowe et al. (1994)<br>Rowe and Pearce<br>(1994)   |                                     |                              | Scott et al. (2000)                                                                              | Dye (1996); Scott<br>and Smith (1997);<br>Scott et al. (2000) |                                                  | van Wyk (1987);<br>Dye (1996); Scott et<br>al. (2000) | van Wyk (1987);<br>Scott and Van Wyk<br>(1990) Dye (1996);<br>Scott et al. (2000) | van Wyk (1987);<br>Scott et al. (2000)      |
|--------------------------|------|--------|-----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|
|                          |      |        | Calibration<br>period       |                                   | 1979-1982                                                                                                                    |                               | 1977                                            | 1977<br>1977                                      | 1977                                |                              | 1949-1952                                                                                        | 1951-1960                                                     |                                                  | 1938-1948                                             | 1938-1940                                                                         | 1946-1972                                   |
| CONTROL CATCHMENT        |      |        | Treatment                   |                                   | 67% Planted with Pinus<br>radiata in 1982 at 1230<br>stems/ha                                                                | -                             | 95% Clearfelled,<br>vegetation left in riparian | 2011e<br>100% Clearfelled<br>100% Clearfelled     | vegetation left in riparian<br>zone |                              | 75% afforested                                                                                   | 86% afforested                                                |                                                  | 98% afforested with<br>Pinus radiata                  | 57% afforestation with<br>Pinus radiata                                           | 89% afforested with<br>Pinus radiata        |
| CONTR                    | Mean | Annual | Streamflow<br>(mm)          |                                   |                                                                                                                              |                               | 1550                                            | 1550<br>1550                                      | 1550                                |                              | 673                                                                                              | 673                                                           |                                                  | 1653                                                  | 1653                                                                              | 1653                                        |
|                          | Mean | Annual | Rainfall<br>(mm)            |                                   | 1350                                                                                                                         |                               | 2650                                            | 2650<br>2650                                      | 2650                                |                              | 1400                                                                                             | 1400                                                          |                                                  |                                                       |                                                                                   |                                             |
|                          |      |        | Control<br>Aspect           |                                   | z                                                                                                                            |                               | SW                                              | SW<br>SW                                          | SW                                  |                              | z                                                                                                | z                                                             |                                                  | SW                                                    | SW                                                                                | SW                                          |
|                          |      | Mean   | Elevation<br>(m)            |                                   | 460-670                                                                                                                      |                               | 335                                             | 335<br>285                                        | 285                                 |                              | 1845-2226                                                                                        | 1845-2226                                                     |                                                  | 366-1460                                              | 366-1460                                                                          | 366-1460                                    |
|                          |      |        | Slope<br>(%)                |                                   |                                                                                                                              |                               | 34                                              | 34<br>36                                          | 36                                  |                              | 0.35                                                                                             | 0.35                                                          |                                                  | 0.40                                                  | 0.40                                                                              | 0.40                                        |
|                          |      |        | Area<br>(ha)                |                                   | 218                                                                                                                          |                               | 2.64                                            | 2.64<br>1.63                                      | 1.63                                |                              | 94.7                                                                                             | 94.7                                                          |                                                  | 245.8                                                 | 245.8                                                                             | 245.8                                       |
|                          |      |        | w Catchment<br>Control      |                                   | GH1                                                                                                                          |                               | M15                                             | M15<br>M6                                         | M6                                  |                              | Cath_iv                                                                                          | Cath_iv                                                       |                                                  | Langrivier                                            | Langrivier                                                                        | Langrivier                                  |
|                          | Mean | Annual | Streamflow<br>(mm)          |                                   |                                                                                                                              |                               | 1550                                            | 1550<br>1550                                      | 1550                                |                              | 807                                                                                              | 683                                                           |                                                  | 594                                                   | 246                                                                               | 564                                         |
|                          | Mean | Annual | Rainfall<br>(mm)            |                                   | 1350                                                                                                                         |                               | 2650                                            | 2650<br>2650                                      | 2650                                |                              | 1400                                                                                             | 1400                                                          |                                                  | 1298                                                  | 1127                                                                              | 1145                                        |
| LL                       |      | Post   | Treatment<br>Vegetation     |                                   | Pinus<br>radiata                                                                                                             |                               | Regrowth                                        | Regrowth<br>Regrowth                              | Regrowth                            |                              | Pinus patula<br>(with 20m<br>strip of<br>riparian<br>zone on<br>either side<br>of the<br>stream) | Pinus patula                                                  |                                                  | Pinus<br>radiata                                      | Pinus<br>radiata                                                                  | Pinus<br>radiata                            |
| <b>FREATED CATCHMENT</b> |      |        | Pre Treatment<br>Vegetation |                                   | Snow -<br>Tussock                                                                                                            |                               | Evergreen                                       | mixed beech-<br>podocarp-<br>hardwood             | forest .                            |                              | Grassland,<br>woody<br>communities<br>along the<br>streams                                       | Grassland,<br>woody<br>communities<br>along the<br>streams    |                                                  | tall open to<br>closed fybos<br>shrubland             | tall open to<br>closed fybos<br>shrubland                                         | tall open to<br>closed fybos<br>התבואו וזאס |
| TREATE                   |      |        | Climate                     |                                   | Rainfall occurs<br>as many small<br>events of long<br>duration and low<br>intensity. Dry<br>signa are<br>common in<br>summer |                               | Superhumid,                                     | microthermal,<br>with adequate<br>rainfall in all | seasons                             |                              | Cold dry winters<br>and hot wet<br>summers                                                       | Cold dry winters<br>and hot wet<br>summers                    | frica                                            | humid<br>mesothermal<br>Mediterranean<br>type         | humid<br>mesothermal<br>Mediterranean<br>type                                     | humid<br>mesothermal<br>Mediterranean       |
|                          |      |        | ר<br>Aspect                 |                                   | z                                                                                                                            |                               | SW                                              | SW<br>SW                                          | SW                                  |                              | z                                                                                                | z                                                             | South A                                          | SW                                                    | 7 SW                                                                              | 7 SW                                        |
|                          |      | Mean   | Elevation<br>(m)            | ealand                            | 460-670                                                                                                                      | and                           | 340                                             | 340<br>290                                        | 305                                 | ~                            | 1845-<br>2454                                                                                    | 1845-<br>2317                                                 | h Centre,                                        | 372-580                                               | 274-1067                                                                          | 0.45 366-1067                               |
|                          |      |        | Slope<br>(%)                | , New 2                           |                                                                                                                              | ew Zeal                       | 37                                              | 36<br>36                                          | 36                                  | th Africa                    | 0.45                                                                                             | 0.38                                                          | Researc                                          | 0.35                                                  | 0.26                                                                              | 0.45                                        |
|                          |      |        | Area<br>(ha)                | e Forest                          | 310                                                                                                                          | land, Ne                      | 4.25                                            | 4.62<br>2.31                                      | 3.84                                | ak, Sout                     | 190                                                                                              | 138.9                                                         | Forest I                                         | 27.2                                                  | 200.9                                                                             | 31.2                                        |
|                          |      |        | Catchment                   | Glendhu State Forest, New Zealand | GH2                                                                                                                          | Maimai, Westland, New Zealand | M13                                             | M14<br>M5                                         | M8                                  | Cathedral Peak, South Africa | Catth_ii                                                                                         | Calth_iii                                                     | Jonkershoek Forest Research Centre, South Africa | Biesievlei                                            | Bosboukoof                                                                        | Lambrechtsb<br>os A                         |

|                   |      | Source of info                  | van Wvk (1987): | Scott and Van Wyk<br>(1990): Dye (1996);<br>Scott and Smith<br>(1997); Scott et al.<br>(2000) | van Wyk (1987):<br>Scott et al. (2000)        |                                    | Van Lill et al.<br>(1980); Dye (1996);<br>Scott and Lesch<br>(1997); Scott and<br>Smith (1997); Scott<br>et al. (2000) | Van Lill et al.<br>(1980): Dye (1996):<br>Scott and Lesch<br>(1997): Scott and<br>Smith (1997): Scott<br>et al. (2000) |                         | Scott and Smith<br>(1997); Scott et al.<br>(2000)                                                   |        | Hsia and Koh (1983)                                                                              |
|-------------------|------|---------------------------------|-----------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------|
|                   |      | Calibration<br>period           |                 | 1947-1964                                                                                     | 1938-1956                                     |                                    | 1956-1968                                                                                                              | 1956-1971                                                                                                              |                         | 1975-1981                                                                                           |        | 1970-1977                                                                                        |
| CONTROL CATCHMENT |      | Treatment                       |                 | 825 afforested with<br>Pinus radiata (20m<br>buffer on stream banks)                          | 36% afforested with<br>Pinus radiata          |                                    | 100% afforested with<br>Eucalyptus grandis                                                                             | 100% afforested with<br>Pinus patula, January<br>1971 - 1370 stems/ha<br>1979 - 650 stems/ha                           |                         | Riparian zone (10%) of<br>area cut in 1981. 83%<br>afforested with<br>Eucalyptus grandis in<br>1983 |        | 1978-1979 100% clear<br>cut                                                                      |
| CONTR             | Mean | Annual<br>Streamflow<br>(mm)    |                 | 1653                                                                                          | 1653                                          |                                    | 118                                                                                                                    | 118                                                                                                                    |                         | 492                                                                                                 |        |                                                                                                  |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                 |                                                                                               |                                               |                                    | 1199                                                                                                                   | 1199                                                                                                                   |                         | 1253                                                                                                |        |                                                                                                  |
|                   |      | Control<br>Aspect               |                 | SW                                                                                            | SW                                            |                                    | ш                                                                                                                      | ш                                                                                                                      |                         | SE                                                                                                  |        | SW                                                                                               |
|                   |      | Mean<br>Elevation<br>(m)        |                 | 366-1460                                                                                      | 366-1460                                      |                                    | 1341-1494                                                                                                              | 1341-1494                                                                                                              |                         | 1140-1420                                                                                           |        |                                                                                                  |
|                   |      | Slope<br>(%)                    |                 | 0.40                                                                                          | 0.40                                          |                                    | 0.26                                                                                                                   | 0.26                                                                                                                   |                         | 0.42                                                                                                |        |                                                                                                  |
|                   |      | Area<br>(ha)                    |                 | 245.8                                                                                         | 245.8                                         |                                    | 36.9                                                                                                                   | 36.9                                                                                                                   |                         | 32.6                                                                                                |        | 8.39                                                                                             |
|                   |      | w Catchment<br>Control          |                 | Langrivier                                                                                    | Langrivier                                    |                                    | Mokobulaan C                                                                                                           | Mokobulaan C                                                                                                           |                         | Westfalla B                                                                                         |        | LHC-5                                                                                            |
|                   | Mean | Annual<br>Streamflow<br>(mm)    |                 | 518                                                                                           | 1077                                          |                                    | 197                                                                                                                    | 196                                                                                                                    |                         | 290                                                                                                 |        | 1100                                                                                             |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                 | 1145                                                                                          | 1319                                          |                                    | 1166                                                                                                                   | 1197                                                                                                                   |                         | 1253                                                                                                |        | 2100                                                                                             |
| L                 |      | Post<br>Treatment<br>Vegetation |                 | Pinus<br>radiata                                                                              | Pinus<br>radiata                              |                                    | Eucalypts                                                                                                              | Pines                                                                                                                  |                         | Eucalyptus<br>grandis                                                                               |        | Regrowth                                                                                         |
| TREATED CATCHMENT |      | Pre Treatment<br>Vegetation     |                 | tall open to<br>closed fybos<br>shrubland                                                     | tall open to<br>closed fybos<br>shrubland     |                                    | sub-climax<br>grassland,<br>North Eastern<br>Mountain                                                                  |                                                                                                                        |                         | transitional<br>between<br>evergreen high<br>forest and<br>deciduous<br>woodland                    |        | Warm-<br>temperate<br>montane<br>rainforest                                                      |
| TREATEI           |      | Climate                         |                 | humid<br>mesothermal<br>Mediterranean<br>type                                                 | humid<br>mesothermal<br>Mediterranean<br>type |                                    | Sub Tropical<br>with 80%of the<br>average annual<br>rainfall of<br>1167mm falling                                      | within the<br>summer months<br>of October to<br>March. Rainfall<br>runoff ratio 0.18                                   |                         | Sub Tropical with Summer rainfall season                                                            |        | warm and<br>humid, the<br>average monthly<br>temperature<br>never falling<br>below 15<br>degrees |
|                   |      | Aspect                          |                 | , SW                                                                                          | SW (                                          |                                    | ш                                                                                                                      | ш                                                                                                                      |                         | SE                                                                                                  |        | SE                                                                                               |
|                   |      | Mean<br>Elevation<br>(m)        |                 | 300-1067                                                                                      | 280-1530                                      | Ifrica                             | 1292-<br>1433                                                                                                          | 1318-<br>1486                                                                                                          |                         | 1050-<br>1320                                                                                       |        |                                                                                                  |
|                   |      | Slope<br>(%)                    |                 | 0.46                                                                                          | 0.49                                          | South #                            | 0.23                                                                                                                   | 0.22                                                                                                                   | ca                      | 0.33                                                                                                |        | 40                                                                                               |
|                   |      | Area<br>(ha)                    |                 | 65.5                                                                                          | 157.2                                         | e Forest,                          | 26.2                                                                                                                   | 34.6                                                                                                                   | outh Afric              | 39.6                                                                                                |        | 5.86                                                                                             |
|                   |      | Catchment                       |                 | Lambrechtsb<br>os B                                                                           | Tierkloof                                     | Uitsoek State Forest, South Africa | Mokobulaan<br>A                                                                                                        | Mokobulaan<br>B                                                                                                        | Westfalia, South Africa | Westfalia D                                                                                         | Taiwan | LHC-4                                                                                            |

|                   |      |        | Source of info              |                            | Bosch and Hewlett<br>(1982)                                                         |                       |                                                                      | Rogerson (1971)                                |                            | Baker (1984); Baker<br>(1986)              | ,<br>Baker (1986)                                                      | Baker (1986)                               | Baker (1986)                       | Baker (1986)                   | Baker (1986)                | Baker (1986)                | Baker (1986)                   |                            | Rich (1972); Baker<br>(1999)                                                        |                                | Rich and Gotterfried<br>(1976)                                                                                                                                |
|-------------------|------|--------|-----------------------------|----------------------------|-------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|------------------------------------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |      |        | Calibration<br>period       |                            |                                                                                     |                       |                                                                      | Clearcut<br>sprayed<br>annually for<br>3 years |                            |                                            | 1958-1962                                                              |                                            |                                    |                                |                             |                             |                                |                            | 1955-1964                                                                           |                                | 1938-1952                                                                                                                                                     |
| CONTROL CATCHMENT |      |        | Treatment                   |                            | 1912-1950, basal area<br>increased from 17 to 28<br>m <sup>2</sup> ha <sup>-1</sup> |                       | 1970, 45% thinned,<br>undergrowth killed by<br>herbicide application | 7-1970, 100%                                   |                            | 1968 - 83% of trees<br>killed by herbicide | 1963 - large pinyon pine<br>and juniper trees<br>removed. Area planted | with grass<br>100% removal of<br>overstory | 57% strip cutting with<br>thinning | 68% strip-cut with<br>thinning | 77% removal of overstory    | 33% removal of<br>overstory | 31% strip cut with<br>thinning |                            | one-sixth area harvested,<br>remainder thinned for<br>optimum growing<br>conditions |                                | 1953 - ripartan cut of<br>broadeaf species<br>1958 - convert moist site<br>(mostly Douglas fir and<br>white fir to grassland<br>1966 convert dry site (mostly |
| CONTI             | Mean | Annual | Streamflow<br>(mm)          |                            |                                                                                     |                       |                                                                      |                                                |                            | 25                                         | 25                                                                     | 93                                         | 93                                 | 66                             | 180                         | 93                          | 160                            |                            | 76.2                                                                                |                                | 8                                                                                                                                                             |
|                   | Mean | Annual | Kaintall<br>(mm)            |                            |                                                                                     |                       | 1333                                                                 | 1333                                           |                            | 466                                        | 466                                                                    | 609                                        | 609                                | 685                            | 728                         | 609                         | 658                            |                            | 686                                                                                 |                                | 835                                                                                                                                                           |
|                   |      | 0      | Control<br>Aspect           |                            |                                                                                     |                       | NE                                                                   | NE                                             |                            | MM                                         | MN                                                                     | SW                                         | SW                                 | S                              | S                           | SW                          | M                              |                            | N14W                                                                                |                                |                                                                                                                                                               |
|                   | :    | Mean   | Elevation<br>(m)            |                            |                                                                                     |                       |                                                                      |                                                |                            | 1591                                       | 1591                                                                   | 2195                                       | 2195                               | 2103                           | 2054                        | 2195                        | 2225                           |                            | 2388-2616                                                                           |                                | 2010-2356                                                                                                                                                     |
|                   |      |        | Slope<br>(%)                |                            |                                                                                     |                       | 15                                                                   | 15                                             |                            |                                            |                                                                        |                                            |                                    |                                |                             |                             |                                |                            | 13.8                                                                                |                                |                                                                                                                                                               |
|                   |      |        | Area<br>(ha)                |                            |                                                                                     |                       | -                                                                    | -                                              |                            | 2 51                                       | 2 51                                                                   | 369                                        | 369                                | 66                             | 98                          | 369                         | 730                            |                            | 471                                                                                 |                                | 210.9                                                                                                                                                         |
|                   |      |        | v Catchment<br>Control      |                            |                                                                                     |                       | WS1                                                                  | WS1                                            |                            | Beaver Creek 2                             | Beaver Creek 2                                                         | WS 13                                      | WS 13                              | WS 15                          | Watershed 18                | WS 13                       | WS 8                           |                            | East Creek                                                                          |                                | Middle fork                                                                                                                                                   |
|                   | Mean | Annual | Streamflow<br>(mm)          |                            | 770                                                                                 |                       | 153                                                                  | 153                                            |                            | 22                                         | 20                                                                     | 150                                        | 117                                | 135                            | 206                         | 174                         | 155                            |                            | 50.8                                                                                |                                | 87                                                                                                                                                            |
|                   | Mean | Annual | Kaintall<br>(mm)            |                            | 1143                                                                                |                       | 1333                                                                 | 1333                                           |                            | 453                                        | 457                                                                    | 617                                        | 650                                | 703                            | 726                         | 679                         | 645                            |                            | 686                                                                                 |                                | 835                                                                                                                                                           |
| Ę                 |      | Post   | Ireatment<br>Vegetation     |                            |                                                                                     |                       |                                                                      |                                                | •                          | Regrowth                                   | Grass                                                                  |                                            |                                    |                                |                             |                             |                                |                            | Regrowth                                                                            |                                | grassland                                                                                                                                                     |
| TREATED CATCHMENT |      | F      | Pre Ireatment<br>Vegetation |                            | Northern<br>hardwoods<br>with conifers                                              |                       | pine with<br>hardwood<br>understory                                  | pine with<br>hardwood<br>understory            |                            |                                            | Juniper-pinyon<br>forest                                               |                                            |                                    | Uneven aged                    | stands of<br>ponderosa pine |                             |                                |                            | Predominately<br>ponderosa pine<br>with an<br>understory of<br>Gamble oak           |                                | Ponderosa pine<br>On the moist<br>sites, Douglas<br>fir and white fir<br>are immortant                                                                        |
| TREATE            |      |        | Climate                     |                            |                                                                                     |                       |                                                                      |                                                |                            |                                            |                                                                        |                                            |                                    |                                |                             |                             |                                |                            |                                                                                     |                                | Cold moist<br>winters, dry war<br>springs and hot<br>moist summers.                                                                                           |
|                   |      |        | Aspect                      |                            |                                                                                     |                       | NE                                                                   | NE                                             |                            | ×                                          | ≥                                                                      | SW                                         | S                                  | SE                             | SW                          | ×                           | 8                              |                            | MN                                                                                  |                                | SW                                                                                                                                                            |
|                   | :    |        | Elevation<br>(m)            |                            | 575                                                                                 |                       | 412                                                                  | 412                                            |                            | 1573                                       | 1595-<br>1790                                                          | 2150                                       | 2194                               | 2164                           | 2115                        | 2225                        | 2194                           |                            | 2165                                                                                | na                             | 2010-<br>2356                                                                                                                                                 |
|                   |      |        | Slope<br>(%)                | irk, USA                   |                                                                                     | ٩                     | 15                                                                   | 15                                             | a, USA                     |                                            |                                                                        |                                            |                                    |                                |                             |                             |                                | , USA                      | 12.6                                                                                | tral Arizo                     |                                                                                                                                                               |
|                   |      |        | Area<br>(ha)                | New Yo                     | 127000                                                                              | Ark., US.             |                                                                      | ←                                              | , Arizon                   | 147                                        | 134                                                                    | 184                                        | 546                                | 102                            | 121                         | 730                         | 454                            | Arizona                    | 364.2                                                                               | sek, Cen                       | 100.4                                                                                                                                                         |
|                   |      |        | Catchment                   | Adirondacks, New York, USA | Sacandaga                                                                           | Alum Creek, Ark., USA | WS2                                                                  | WS3                                            | Beaver Creek, Arizona, USA | WS 3                                       | WS1                                                                    | WS 12                                      | WS 14                              | WS 16                          | WS 17                       | WS 8                        | 6 SM                           | Castle Creek, Arizona, USA | West Fork                                                                           | Workman Creek, Central Arizona | North Fork                                                                                                                                                    |

|                          | Source of info                                         | Rich and Gottfried<br>(1976)                                                                                              | Schneider and Ayer<br>(1961)                                                                                                 | Harrold et al. (1962)                     |                              | Swank and Miner<br>(1968); Swank et al.<br>(1987)                                                | Swank and Crossley<br>(1987)                                                                    | Swank and Helvey<br>(1973); Swank et al.<br>(1987)                                                   | Swank and Miner<br>(1968); Swank et al.<br>(1987)                                                                                                 | Johnson and<br>Kovener (1956)                                                |
|--------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                          | Calibration<br>period                                  | 1938-1952                                                                                                                 |                                                                                                                              |                                           |                              | 1944-1953                                                                                        |                                                                                                 | 1936/37-<br>1939/1940                                                                                | 1938-1941                                                                                                                                         | 1941-1948                                                                    |
| CONTROL CATCHMENT        | Treatment                                              | 1953 - Start single tree<br>selection harvest<br>1966 - convert to pure<br>ponderosa pine with<br>basal area of 9.2 m2/ha | 1934, 35% reforested<br>with conifers<br>1932, 47% reforested<br>with conifers<br>1931-1939, 58%<br>reforested with conifers | 1938-1939, 10%<br>reforested, mostly pine |                              | 1956 - entire catchment<br>clear-cut and white pine<br>seedlings planted<br>Exploitive selective | logging during the period<br>1942-1956 with a 30%<br>reduction in total<br>watershed basal area | Sept 1939-Jan 1940 all<br>woody vegetation was<br>cut (no material<br>removed): 1962<br>Regrowth cut | All shrub and forest<br>vegetation cut Jan-March<br>1942 Annual sprout<br>growth cut 1943-1955<br>1956 white pine planted<br>Deer 1048-March 1940 | all larrer and<br>thododendron cut close<br>to ground (22% of basal<br>area) |
| CONTI                    | Mean<br>Annual<br>Streamflow<br>(mm)                   | 86                                                                                                                        |                                                                                                                              |                                           |                              |                                                                                                  |                                                                                                 | 1034                                                                                                 |                                                                                                                                                   | 1321                                                                         |
|                          | Mean<br>Annual<br>Rainfall<br>(mm)                     | 835                                                                                                                       |                                                                                                                              | 070                                       |                              |                                                                                                  |                                                                                                 | 1939                                                                                                 |                                                                                                                                                   | 2083                                                                         |
|                          | Control<br>Aspect                                      |                                                                                                                           |                                                                                                                              | SE                                        |                              |                                                                                                  |                                                                                                 | MN                                                                                                   |                                                                                                                                                   | z                                                                            |
|                          | Mean<br>Elevation<br>(m)                               | 2010-2356                                                                                                                 |                                                                                                                              | 276-361                                   |                              |                                                                                                  |                                                                                                 | 726-993                                                                                              |                                                                                                                                                   | 823-1174                                                                     |
|                          | Slope<br>(%)                                           |                                                                                                                           |                                                                                                                              | 14                                        | -                            |                                                                                                  |                                                                                                 |                                                                                                      |                                                                                                                                                   |                                                                              |
|                          | Area<br>(ha)                                           | 210.9                                                                                                                     | 1830                                                                                                                         | 122.6                                     | -                            |                                                                                                  |                                                                                                 | 12.5                                                                                                 |                                                                                                                                                   | 23.9                                                                         |
|                          | Mean<br>Annual<br>Streamflow Catchment<br>(mm) Control | Middle fork                                                                                                               | Albright Creek                                                                                                               | 196                                       |                              |                                                                                                  |                                                                                                 | WS18                                                                                                 |                                                                                                                                                   | WS21                                                                         |
|                          | Mean<br>Annual<br>Streamflov<br>(mm)                   |                                                                                                                           | 616<br>535<br>627                                                                                                            | 300                                       | -                            | 787                                                                                              |                                                                                                 | 872                                                                                                  | 868                                                                                                                                               | 1219                                                                         |
|                          | Mean<br>Annual<br>Rainfall<br>(mm)                     | 835                                                                                                                       | 1030<br>974<br>1030                                                                                                          | 970                                       |                              | 1727                                                                                             |                                                                                                 | 1829                                                                                                 | 1930                                                                                                                                              | 2032                                                                         |
| Ę                        | Post<br>Treatment<br>Vegetation                        | Ponderosa<br>pine                                                                                                         | mixed<br>hardwoods<br>and conifers                                                                                           | 100%<br>hardwood/<br>white pine           | -                            | White Pine                                                                                       | Regrowth                                                                                        | Regrowth                                                                                             | White Pine                                                                                                                                        | Regrowth                                                                     |
| <b>FREATED CATCHMENT</b> | Pre Treatment<br>Vegetation                            |                                                                                                                           | mixed<br>hardwoods and<br>confiers                                                                                           | 30% hardwood<br>in 1938                   | -                            | Oak-hickory<br>forest                                                                            | Oak-hickory<br>forest                                                                           | Second<br>regrowth stand<br>with a<br>scattering of<br>overmature<br>trees                           | Oak-hickory<br>forest                                                                                                                             | Oak-hickory<br>forest                                                        |
| TREATEI                  | Climate                                                |                                                                                                                           | Continental type climate                                                                                                     |                                           | -                            |                                                                                                  |                                                                                                 | marine with cool<br>summers, mild<br>winters, and<br>adequate rainfall<br>during all                 | seasons                                                                                                                                           |                                                                              |
|                          | Aspect                                                 | SW                                                                                                                        | N N N                                                                                                                        | S                                         |                              | S                                                                                                | SSE                                                                                             | ENE                                                                                                  | MN                                                                                                                                                | MN                                                                           |
|                          | Mean<br>De Elevation<br>(m)                            | 2010-<br>2356                                                                                                             | 565<br>525<br>520                                                                                                            | 306-393                                   | SA                           | 705-988                                                                                          | 742-1159                                                                                        | 725-912                                                                                              | 760-1021                                                                                                                                          | 796-1119                                                                     |
|                          | Slope<br>(%)                                           |                                                                                                                           | JSA                                                                                                                          | <b>SA</b><br>22.8                         | olina, U                     | 34                                                                                               | 24                                                                                              | 19                                                                                                   | 57                                                                                                                                                | 32                                                                           |
|                          | Area<br>(ha)                                           | 128.7                                                                                                                     | York, U<br>391<br>181<br>808                                                                                                 | 0hio, U;<br>18                            | orth Can                     | 16.2                                                                                             | 86                                                                                              | 16.1                                                                                                 | 13.4                                                                                                                                              | 28.3                                                                         |
|                          | Catchment                                              | South Fork                                                                                                                | Central New York, USACold Spring391Brook391Brook181Shacklam808Brook808                                                       | Coshocton, Ohio, USA<br>172 18            | Coweeta, North Carolina, USA | Coweeta 1                                                                                        | Coweeta, 10                                                                                     | Coweeta, 13                                                                                          | Coweeta, 17                                                                                                                                       | Coweeta, 19                                                                  |

|                   |      | Source of info                                 | Swank and Crossley<br>(1987)                                                             |                                                                     | Swank and Crossley<br>(1987)                                                                  |                                                             |                        | Swank and Crossley<br>(1987)                                                                       |                     |                                                 | Swank and Helvey<br>(1973)                              |                      | Swank and Crossley<br>(1987)                  | Swank and Crossley<br>(1987)                                                                     | Hibbert (1969): Burt<br>and Swank (1992)                                                                                                                                                                           |
|-------------------|------|------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|---------------------------------------------------------|----------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |      | Calibration<br>period                          |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 1943/1944-<br>1957/1958                                 |                      |                                               |                                                                                                  |                                                                                                                                                                                                                    |
| CONTROL CATCHMENT |      | Treatment                                      | All woody vegetation<br>within alternate 10m<br>strips deadened by<br>chemicals in 1955. | reduced total basal area<br>by 50%<br>Multiple use<br>demonstration | comprising of<br>commercial harvest with<br>clear-cutting on 77ha,<br>thinning on 39ha of the | cove forest and no<br>cutting on 28 ha;<br>products removed | All vegetation cut and | burnt or removed from<br>the watershed in 1940.<br>Unregulated agriculture<br>on 6ha for a 12 vear | period, followed by | planting yellow poplar<br>and white pine        | 100% vegetation cut in<br>1963 (no products<br>removed) | Commercial selection | cut with 22% of basal<br>area removed in 1955 | Commercial selection<br>cut with 35% of basal<br>area removed in 1955<br>1942 - 12% of catchment | along stream was cut<br>(Regrowth) 1958 -<br>merichantable timber<br>removed 1959 - reminder<br>of catchment cleared and<br>grass sown. Grass<br>herbicide in 1966 and<br>1967 Grass herbicide in<br>1966 and 1967 |
| CONTI             | Mean | Annual<br>Streamflow<br>(mm)                   |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 1675                                                    |                      |                                               |                                                                                                  | 988/1034                                                                                                                                                                                                           |
|                   | Mean | Annual<br>Rainfall<br>(mm)                     |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 2222                                                    |                      |                                               |                                                                                                  | 1876/1939                                                                                                                                                                                                          |
|                   |      | Control<br>Aspect                              |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | ESE                                                     |                      |                                               |                                                                                                  | MN/MN                                                                                                                                                                                                              |
|                   |      | Mean<br>Elevation<br>(m)                       |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 1021-1542                                               |                      |                                               |                                                                                                  | 707-<br>992/993-<br>726                                                                                                                                                                                            |
|                   |      | Slope<br>(%)                                   |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 |                                                         |                      |                                               |                                                                                                  |                                                                                                                                                                                                                    |
|                   |      | Area<br>(ha)                                   |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 49                                                      |                      |                                               |                                                                                                  | 61/13                                                                                                                                                                                                              |
|                   |      | Annual<br>Streamflow Catchment<br>(mm) Control |                                                                                          |                                                                     |                                                                                               |                                                             |                        | 607                                                                                                |                     |                                                 | Coweeta 36                                              |                      |                                               |                                                                                                  | WS14/WS18                                                                                                                                                                                                          |
|                   | Mean | Annual<br>Streamflov<br>(mm)                   |                                                                                          |                                                                     |                                                                                               |                                                             |                        | 1814                                                                                               |                     |                                                 | 1515                                                    |                      |                                               |                                                                                                  | 838                                                                                                                                                                                                                |
|                   | Mean | Annual<br>Rainfall<br>(mm)                     |                                                                                          |                                                                     |                                                                                               |                                                             |                        |                                                                                                    |                     |                                                 | 2244                                                    |                      |                                               |                                                                                                  | 1854                                                                                                                                                                                                               |
| TN                |      | Post<br>Treatment<br>Vegetation                |                                                                                          |                                                                     |                                                                                               |                                                             |                        | Regrowth                                                                                           |                     |                                                 |                                                         |                      |                                               |                                                                                                  | Grass                                                                                                                                                                                                              |
| TREATED CATCHMENT |      | Pre Treatment<br>Vegetation                    | Oak-hickory<br>forest                                                                    |                                                                     | Oak-hickory<br>forest                                                                         |                                                             |                        | Oak-hickory<br>forest                                                                              |                     | Second                                          | regrowth stand<br>with a<br>scattering of<br>overmature | trees                | Oak-hickory<br>forest                         | Oak-hickory<br>forest                                                                            | oak - hickory<br>forest                                                                                                                                                                                            |
| TREATEI           |      | Climate                                        |                                                                                          |                                                                     |                                                                                               |                                                             |                        | marine with cool                                                                                   | summers, mild       | winters, and<br>adequate rainfall<br>during all | seasons                                                 |                      |                                               |                                                                                                  |                                                                                                                                                                                                                    |
|                   |      | Aspect                                         | z                                                                                        |                                                                     | ш                                                                                             |                                                             |                        | ш                                                                                                  |                     |                                                 | NE                                                      |                      | SE                                            | SE                                                                                               | ŇZ                                                                                                                                                                                                                 |
|                   |      | Mean<br>Elevation<br>(m)                       | 847-1244                                                                                 |                                                                     | 964-1551                                                                                      |                                                             |                        | 739-931                                                                                            |                     |                                                 | 1280                                                    |                      | 1035                                          | 1065                                                                                             | 793                                                                                                                                                                                                                |
|                   |      | Slope<br>(%)                                   | 35                                                                                       |                                                                     | 31                                                                                            |                                                             |                        | 32                                                                                                 |                     |                                                 | 33                                                      |                      | 42                                            | 46                                                                                               | 35                                                                                                                                                                                                                 |
|                   |      | Area<br>(ha)                                   | 34                                                                                       |                                                                     | 144                                                                                           |                                                             |                        | 9.2                                                                                                |                     |                                                 | 43.7                                                    |                      | 20                                            | 29                                                                                               | 6                                                                                                                                                                                                                  |
|                   |      | Catchment                                      | Coweeta, 22                                                                              |                                                                     | Coweeta, 28                                                                                   |                                                             |                        | Coweeta, 3                                                                                         |                     |                                                 | Coweeta, 37                                             |                      | Coweeta, 40                                   | Coweeta, 41                                                                                      | Coweeta, 6                                                                                                                                                                                                         |

|                   |      | Source of info                  |                           | Jones (2000)                   | Jones (2000)                   | Jones (2000)                   |                        | Bosch and Hewlett<br>(1982)                | Stednick (1996);       | Jones (2000)     | Jones (2000)                                 |                                 | Alexander et al.<br>(1985): Troendle and<br>King (1985) | Alexander et al.                            | (1985); Troendle and<br>King (1985)                 | Alexander et al.<br>(1985)                                |                                     | Hewlett et al. (1984);<br>Hewlett and Doss<br>(1984)                              |                                       | Jones (2000);<br>Rothacher (1970) | Jones (2000)              | Jones (2000);<br>Rothacher (1970) | Jones (2000)          | Jones (2000)                         |
|-------------------|------|---------------------------------|---------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------|--------------------------------------------|------------------------|------------------|----------------------------------------------|---------------------------------|---------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------|--------------------------------------|
|                   |      | Calibration<br>period           |                           | 1963-1970                      | 1963-1970                      | 1963-1970                      |                        |                                            | 10E0 1071              | 1730-1704        | 1958-1969                                    |                                 | 1970-1977                                               |                                             | 1975-1982                                           | 1943-1953                                                 |                                     | 1973-1974                                                                         |                                       | 1952-1961                         | 1968-1974                 | 1952-1958                         | 1963-1973             | 1963-1973                            |
| CONTROL CATCHMENT |      | Treatment                       |                           | 50% selection cut 1971         | 25-30% Patch cut 1971          | 100% clear-cut 1971            |                        | 1934-1942, 34%<br>reforested with pines    | 1969-17, 25% clear-cut | in 3-4ha units   | 1970-1972, 25% clear<br>cut in 8-10 ha units |                                 | Timber removed on 36% of land area (1977)               | 30% harvested in<br>irregular shaped clear- | cuts, varying in size from<br>1 to 6 ha (Summers of | 1983-1984)<br>1954-1956, 40%<br>commercial cut in strips. |                                     | 100% catchment cleared<br>Oct 1974-Jan 1975. Jan<br>1976 Lobiolly pine<br>planted |                                       | 100% clear-cut (1962-<br>1966)    | 100% clear-cut (1975)     | 25-30% Patch cut 1963             | 100% Clear-cut (1974) | 50% Clear-cut in 1974<br>and in 1984 |
| CONTR             | Mean | Annual<br>Streamflow<br>(mm)    |                           |                                |                                |                                |                        |                                            |                        |                  |                                              |                                 |                                                         |                                             |                                                     |                                                           |                                     |                                                                                   |                                       |                                   |                           |                                   |                       |                                      |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                           |                                |                                |                                |                        |                                            |                        |                  |                                              |                                 |                                                         |                                             |                                                     |                                                           |                                     |                                                                                   |                                       | 2286                              | 2286                      | 2286                              | 2286                  | 2286                                 |
|                   |      | Control<br>Aspect               |                           |                                |                                |                                |                        |                                            |                        |                  |                                              |                                 |                                                         |                                             |                                                     |                                                           |                                     |                                                                                   |                                       | MN                                | NN                        | MN                                | S                     | S                                    |
|                   |      | Mean<br>Elevation<br>(m)        |                           | 730-1065                       | 730-1065                       | 730-1065                       |                        |                                            | 0001 010               | 040-1700         | 840-1988                                     |                                 | 3002-3536                                               |                                             | 3002-3536                                           | 2896-3719                                                 |                                     |                                                                                   |                                       | 530-1070                          | 530-1070                  | 530-1070                          | 960-1130              | 960-1130                             |
|                   |      | Slope<br>(%)                    |                           |                                |                                |                                |                        |                                            |                        |                  |                                              |                                 |                                                         |                                             |                                                     |                                                           |                                     |                                                                                   |                                       |                                   |                           |                                   |                       |                                      |
|                   |      | Area<br>(ha)                    |                           | 49                             | 49                             | 49                             |                        |                                            | C I C                  | 007              | 253                                          |                                 | 124                                                     |                                             | 124                                                 | 803                                                       |                                     | 42.5                                                                              |                                       | 90                                | 90                        | 60                                | 21.4                  | 21.4                                 |
|                   |      | w Catchment<br>Control          |                           | Coyote 4                       | Coyote 4                       | Coyote 4                       |                        |                                            |                        | LUX Z            | Fox 2                                        |                                 | Lexen Creek                                             |                                             | Lexen Creek                                         | East St Louis<br>Creek                                    |                                     | WS15                                                                              |                                       | HJ 2                              | HJ 2                      | HJ 2                              | HJ 8                  | HJ 8                                 |
|                   | Mean | Annual<br>Streamflow<br>(mm)    |                           | 627                            |                                |                                |                        | 460                                        | 1 16.0                 | 00/1             | 1750                                         |                                 |                                                         |                                             |                                                     | 283                                                       |                                     |                                                                                   |                                       |                                   |                           |                                   |                       |                                      |
|                   | Mean | Annual<br>Rainfall<br>(mm)      |                           | 1230                           |                                |                                |                        | 1184                                       | 0620                   | 0017             | 2730                                         |                                 |                                                         |                                             |                                                     | 762                                                       |                                     |                                                                                   |                                       | 2286                              | 2286                      | 2286                              | 2286                  | 2286                                 |
| Ę                 |      | Post<br>Treatment<br>Vegetation |                           |                                | Regrowth                       |                                |                        | Regrowth                                   | 4+110000               | Reynowill        | Regrowth                                     |                                 | Regrowth                                                |                                             | Regrowth                                            | Regrowth                                                  |                                     | loblolly pine                                                                     |                                       | Regrowth                          | Regrowth                  | Regrowth                          | Regrowth              | Regrowth                             |
| TREATED CATCHMENT |      | Pre Treatment<br>Vegetation     |                           | Douglas fir,<br>mixed conifers | Douglas fir,<br>mixed conifers | Douglas fir,<br>mixed conifers |                        | 65% mixed<br>hardwoods and<br>pine in 1934 |                        | Douglas Fir,     | hemlock                                      |                                 | lodgepole pine<br>on all lower                          | and mid-south<br>slopes, and                | alpire turiara<br>above the<br>timber line          | lodgepole pine<br>and spruce-fir                          |                                     | Fully forested<br>piedmont land                                                   |                                       | :                                 | Old growth<br>Douglas fir |                                   | Old arowth            | Douglas fir                          |
| TREATEI           |      | Climate                         |                           |                                |                                |                                |                        |                                            | The maritime           | climate has wet, | dry, cool<br>summers                         |                                 |                                                         | vith long, cold                             | willters and<br>short, cool<br>summers              |                                                           |                                     |                                                                                   |                                       | tvoically wet in                  | winter and dry in         | summer                            | typically wet in      | winter and dry in<br>summer          |
|                   |      | n<br>Aspect                     |                           |                                | 10                             | 10                             |                        | SE                                         |                        |                  |                                              |                                 |                                                         |                                             |                                                     | SW                                                        |                                     | SW                                                                                | SA<br>SA                              | ≥                                 | S                         | MN                                | S                     | S                                    |
|                   |      | Mean<br>Elevation<br>(m)        |                           | 730-1065                       | 730-1065                       | 730-1065                       |                        | 410                                        | 010 01F                | 076-040          | 840-950                                      | USA                             |                                                         |                                             |                                                     | 2896-<br>3505                                             | gia. USA                            | 165                                                                               | orest, US                             | 460-990                           | 425-700                   | 490-1070                          | 880-1010              | 910-1020                             |
|                   |      | Slope<br>(%)                    | on. USA                   |                                |                                |                                | JSA                    |                                            | ASL                    |                  |                                              | l Forest,                       |                                                         |                                             |                                                     |                                                           | est. Geor                           |                                                                                   | imental F                             | 28                                |                           | 32                                |                       |                                      |
|                   |      | Area<br>(ha)                    | ek. Orea                  | 69                             | 68                             | 50                             | nessee, L              | 694                                        | Jregon, L              | 60               | 71                                           | nimenta                         | 41                                                      |                                             | 78                                                  | 289                                                       | orial For                           | 32.5                                                                              | vs Expen                              | 96                                | 10.1                      | 101                               | 13                    | 15.4                                 |
|                   |      | Catchment                       | Covote Creek. Oregon. USA | Coyote 1                       | Coyote 2                       | Coyote 3                       | Eastern Tennessee, USA | White<br>Hollow                            | Fox Creek, Oregon, USA | 2                | FC3                                          | Fraser Experimental Forest, USA | Deadhorse<br>Creek -<br>North Fork                      | Deadhorse                                   | Creek -<br>Upper Basin                              | Fool Creek                                                | Grant Memorial Forest, Georgia, USA | WS14                                                                              | H.J. Andrews Experimental Forest, USA | HJ1                               | HJ10                      | HJ3                               | 9LH                   | HJ7                                  |

|                   |      |        | Source of info              |                                   | Martin and                                  | Hornbeck (1989);<br>Federer et al. (1990);<br>Hornheck et al | (1997); Hornbeck et<br>al. (1987)                          |                                        |                               | Dietterick and Lynch               | (1989); Lynch and<br>Corbett (1990);                                   | Hornbeck et al.<br>(1993)              |                                                   |                                 |                       |                                 |                           |                   |                                | Harris (1977)                                  |                               | Harris (1973); Harris<br>(1977)          |                           |
|-------------------|------|--------|-----------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------|------------------------------------|------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------|-----------------------|---------------------------------|---------------------------|-------------------|--------------------------------|------------------------------------------------|-------------------------------|------------------------------------------|---------------------------|
|                   |      |        | Calibration<br>period       |                                   | 7 years                                     | 1960-1969                                                    | 1963-1983                                                  |                                        |                               |                                    |                                                                        |                                        |                                                   |                                 |                       |                                 |                           |                   |                                | 1959-1965                                      |                               | 1959-1965                                |                           |
| CONTROL CATCHMENT |      |        | Treatment                   |                                   | Clearfelling and<br>herhiciding (1965-1968) | Strip cut in three phases<br>during the autumns of           | 1970, 1972 and 1974<br>Whole tree harvesting<br>1983-1984. |                                        | 9ha<br>1071 - clearcut lowest | Slope 11ha<br>1074 Herbicide lever | 1974 rielbicue lower<br>and mid-slope areas<br>1975-1976 Clearcut 17ha | on upper slope<br>1977 - Herbicide all | clearcut areas<br>1976-1977 Clear cut on<br>45 ha | -                               | 1954, 100% chemically | 1954 100% chemically controlled |                           |                   |                                | 1966-1967, 25% clear-<br>cut in patches, roads | constructed                   | 82% clear-cut, burned in<br>1967         |                           |
| CONTR             | Mean | Annual | Streamflow<br>(mm)          |                                   |                                             |                                                              |                                                            |                                        |                               |                                    |                                                                        |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               | 1974                                     |                           |
|                   | Mean | Annual | Rainfall<br>(mm)            |                                   | 1219                                        | 1219                                                         | 1219                                                       |                                        |                               |                                    |                                                                        |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               | 2483                                     |                           |
|                   |      |        | Control<br>Aspect           |                                   | S23W                                        | S23W                                                         | S23W                                                       |                                        |                               |                                    | SE                                                                     |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               |                                          |                           |
|                   |      | Mean   | Elevation<br>(m)            |                                   | 527-732                                     | 527-732                                                      | 527-732                                                    |                                        |                               |                                    | 800-1450                                                               |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               |                                          |                           |
|                   |      |        | Slope<br>(%)                |                                   |                                             |                                                              |                                                            |                                        |                               |                                    |                                                                        |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               |                                          |                           |
|                   |      |        | Area<br>(ha)                |                                   | 42.4                                        | 42.4                                                         | 42.4                                                       |                                        |                               |                                    | 123                                                                    |                                        |                                                   |                                 |                       |                                 |                           |                   |                                | 202                                            |                               | 202                                      |                           |
|                   |      |        | w Catchment<br>Control      |                                   | WS3                                         | WS3                                                          | WS3                                                        |                                        |                               |                                    | LR 1                                                                   |                                        |                                                   |                                 |                       |                                 |                           |                   |                                | Flynn Creek                                    |                               | Flynn Creek                              |                           |
|                   | Mean | Annual | Streamflow<br>(mm)          |                                   |                                             |                                                              |                                                            |                                        |                               |                                    | 321                                                                    |                                        |                                                   |                                 | 34                    | 34                              |                           |                   |                                | 1906                                           |                               | 1886                                     |                           |
|                   | Mean | Annual | Rainfall<br>(mm)            |                                   | 1219                                        | 1219                                                         | 1219                                                       |                                        |                               |                                    | 1004                                                                   |                                        |                                                   |                                 | 452                   | 452                             |                           | 1354              |                                | 2474                                           |                               | 2483                                     |                           |
| Ę                 |      | Post   | Treatment<br>Vegetation     |                                   | Regrowth                                    | Regrowth                                                     | Regrowth                                                   |                                        |                               |                                    | Regrowth                                                               |                                        |                                                   |                                 |                       | Regrowth                        |                           | Regrowth          |                                | Regrowth                                       |                               | Regrowth                                 |                           |
| TREATED CATCHMENT |      |        | Pre Treatment<br>Vegetation |                                   |                                             | even aged<br>deciduous                                       | hardwoods                                                  |                                        |                               |                                    | Central<br>hardwoods                                                   |                                        |                                                   |                                 | Maroinal              | chaparral                       |                           | Mixed<br>hardwood |                                | 60% douglas fir<br>and 40% alder               | 85% alder and<br>maple before | the headwaters<br>had been<br>previously | logged in early<br>1950's |
| TREATE            |      |        | Climate                     |                                   |                                             |                                                              |                                                            |                                        |                               |                                    |                                                                        |                                        |                                                   |                                 |                       |                                 |                           |                   |                                |                                                |                               |                                          |                           |
|                   |      |        | Aspect                      |                                   | S31E                                        | S40E                                                         | S                                                          | SA                                     |                               |                                    | NE                                                                     |                                        |                                                   |                                 | SE                    | SE                              |                           | шШ                |                                |                                                |                               |                                          |                           |
|                   |      | Mean   | Elevation<br>(m)            | Forest                            | 503-<br>716m                                | 422-747                                                      | 488-762                                                    | Forest, U                              |                               |                                    | 360                                                                    |                                        | 340                                               | ISA                             | 1420                  | 1420                            |                           |                   | SA                             | 312                                            |                               | 312                                      |                           |
|                   |      |        | a Slope<br>(%)              | Hubbard Brook Experimental Forest | 3 20-<br>30%                                |                                                              |                                                            | erimental                              |                               |                                    |                                                                        |                                        |                                                   | Arizona, L                      |                       |                                 | oi, USA                   |                   | Alsea River Basin, Oregon, USA |                                                |                               |                                          |                           |
|                   |      |        | Area<br>t (ha)              | Brook Exp                         | 15.8                                        | 36                                                           | 22                                                         | idge Exp                               |                               |                                    | 43                                                                     |                                        | 104                                               | aniages,                        | <u>د</u>              | 2                               | Vississip                 |                   | ar Basin, C                    | k 303                                          |                               | 70                                       |                           |
|                   |      |        | Catchment                   | Hubbard E                         | WS2                                         | WS4                                                          | WS5                                                        | Leading Ridge Experimental Forest, USA |                               |                                    | LR2                                                                    |                                        | LR 3                                              | Natural Draniages, Arizona, USA | A                     | U                               | Northern Mississippi, USA | NSII<br>NSII      | Alsea Rive                     | Deer Creek                                     |                               | Needle<br>Branch                         |                           |

|                   |                | Source of info              |                     | Burgy and<br>Papazafiriou (1971)            | Burgy and<br>Papazafiriou (1971)                            |                        |                            | Bosch and Hewlett<br>(1982)              |                | Hibbert (1971)      | Hibbert (1971)            | Davis (1984)                              |                           |                                            | Bosch and Hewlett<br>(1982)                                 |                                                                   |                                 | Patric and Reinhart<br>(1971); Hornbeck et | al. (1993)                                                                        |                                     |                                                                                |  |
|-------------------|----------------|-----------------------------|---------------------|---------------------------------------------|-------------------------------------------------------------|------------------------|----------------------------|------------------------------------------|----------------|---------------------|---------------------------|-------------------------------------------|---------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|--|
|                   |                | Calibration<br>period       |                     | 1956-1965                                   | 1956-1962                                                   |                        |                            |                                          |                | 1956-1959           | 1956-1959                 | 1964-1969                                 |                           |                                            |                                                             |                                                                   |                                 |                                            |                                                                                   |                                     |                                                                                |  |
| CONTROL CATCHMENT |                | Treatment                   |                     | 1966 - Conversion to<br>grassland commenced | Vegetation conversion to<br>grassland commenced in<br>1963. |                        |                            | 1958 - 1.7% cut<br>(Riparian vegetation) |                | 1960 - converted to | 1965 - converted to grass | 1969 - chaparral cleared<br>grass planted |                           | 1971-1972, 30%<br>clearcut, additional 22% | selective cut, burned<br>residual poisoned pines<br>planted | 1969-1970 85%<br>conversions to pine after<br>commercial clearcut |                                 | 1957-1958 85% basal<br>areas clearcut      | 1957-58 36% are<br>clearcut<br>1957-58 13% basal area<br>removed by selection cut | 1963 - 8% Removed by<br>same method | 1968 - 6% of basal area<br>removed, same method<br>1969-1970 - 91%<br>clearcut |  |
| CONTH             | Mean<br>Annual | Streamflow<br>(mm)          |                     |                                             |                                                             |                        |                            |                                          |                |                     |                           |                                           |                           |                                            |                                                             |                                                                   | -                               | 60                                         |                                                                                   |                                     |                                                                                |  |
|                   | Mean<br>Annual | Rainfall<br>(mm)            |                     |                                             |                                                             |                        |                            |                                          |                |                     |                           |                                           |                           |                                            |                                                             |                                                                   |                                 | 1422                                       |                                                                                   |                                     |                                                                                |  |
|                   |                | Control<br>Aspect           |                     |                                             |                                                             |                        |                            |                                          |                |                     |                           |                                           |                           |                                            |                                                             |                                                                   |                                 | SE                                         |                                                                                   |                                     |                                                                                |  |
|                   | Mean           | Elevation<br>(m)            |                     |                                             |                                                             |                        |                            |                                          |                |                     |                           |                                           |                           |                                            |                                                             |                                                                   |                                 |                                            |                                                                                   |                                     |                                                                                |  |
|                   |                | Slope<br>(%)                |                     |                                             |                                                             |                        |                            |                                          |                |                     | 34                        |                                           |                           |                                            |                                                             |                                                                   |                                 |                                            |                                                                                   |                                     |                                                                                |  |
|                   |                | Area<br>(ha)                |                     | 19.1                                        | 19.1                                                        |                        |                            |                                          |                |                     | 36.2                      |                                           |                           |                                            |                                                             |                                                                   |                                 | 39                                         |                                                                                   |                                     |                                                                                |  |
|                   |                | Catchment<br>Control        |                     | Watershed A                                 | Watershed A                                                 |                        |                            |                                          |                |                     | D                         |                                           |                           |                                            |                                                             |                                                                   |                                 | Fernow 4                                   |                                                                                   |                                     |                                                                                |  |
|                   | Mean<br>Annual | Streamflow<br>(mm)          |                     |                                             | 145                                                         |                        |                            |                                          |                | 11                  | 58                        | 36                                        |                           |                                            |                                                             |                                                                   |                                 | 584                                        | 660                                                                               | 762                                 |                                                                                |  |
|                   | Mean<br>Annual | Rainfall<br>(mm)            |                     |                                             | 635                                                         |                        |                            |                                          |                | 582                 | 638                       | 681                                       |                           |                                            | 1397                                                        |                                                                   |                                 | 1524                                       | 1500                                                                              | 1473                                |                                                                                |  |
| Ę                 | Post           | Treatment<br>Vegetation     |                     | Grass                                       | Grass                                                       |                        |                            | Regrowth                                 |                | Grass               | Grass                     | Grass                                     |                           |                                            | Pine                                                        |                                                                   |                                 | Regrowth                                   |                                                                                   |                                     |                                                                                |  |
| TREATED CATCHMENT |                | Pre Treatment<br>Vegetation |                     | Oak woodland                                | Oak woodland                                                |                        | Chaparral with<br>woodland | riparian<br>vegetation<br>along streams  |                | Chaparral           | Chaparral                 | Chaparral                                 |                           |                                            | Pine and<br>hardwood                                        |                                                                   |                                 | Mixed<br>hardwoods                         |                                                                                   |                                     |                                                                                |  |
| TREATE            |                | Climate                     |                     |                                             |                                                             |                        |                            |                                          |                |                     |                           |                                           |                           |                                            |                                                             |                                                                   |                                 | rainy and cool<br>climate                  |                                                                                   |                                     |                                                                                |  |
|                   |                | Aspect                      |                     |                                             | z                                                           |                        |                            | S                                        |                | z                   | z                         | z                                         |                           |                                            |                                                             |                                                                   | -                               | Ш.                                         | S                                                                                 | S                                   |                                                                                |  |
|                   | Mean           | Ы                           |                     |                                             | 168                                                         |                        |                            | 840                                      |                | 1080                | 1160                      | 168                                       |                           |                                            |                                                             |                                                                   | USA                             | 755                                        | 780                                                                               | 805                                 |                                                                                |  |
|                   |                |                             |                     |                                             |                                                             | SA                     |                            |                                          |                |                     |                           | 41                                        | la., US∕                  |                                            |                                                             |                                                                   | I Forest                        |                                            |                                                                                   |                                     |                                                                                |  |
|                   |                | Area<br>(ha)                | w. USA              | 17.2                                        | ß                                                           | alif., U               |                            | 354                                      | SA             | 1 9                 | 3 9                       | 27.7                                      | Creek A                   |                                            | 53                                                          | 53                                                                | rimenta.                        | 30                                         | 15                                                                                | 34                                  |                                                                                |  |
|                   |                | Catchment                   | Placer Country, USA | Watershed B                                 | Watershed C                                                 | San Dimas, Calif., USA |                            | Monroe<br>Canyon                         | Three Bar, USA | В                   | U                         | ш                                         | Upper Bear Creek Ala, USA |                                            | XF1                                                         | XF2                                                               | Fernow Experimental Forest, USA | Fernow 1                                   | Fernow 2                                                                          | Fernow 3                            |                                                                                |  |

|                   | Source of info                       |                                                                                               |                                                                                             |                                           |                      | Van Haveren (1988)              |                        | Bosch and Hewlett<br>(1982)           |                 | Bosch and Hewlett<br>(1982)                                                                |                               | Keppeler and Ziemer<br>(1990); Wright et al.<br>(1990) |                           | Kirby et al. (1991) | Johnson (1991)                                            |
|-------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|---------------------------------|------------------------|---------------------------------------|-----------------|--------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|---------------------------|---------------------|-----------------------------------------------------------|
| CONTROL CATCHMENT | Calibration<br>period                |                                                                                               | 1956-1963                                                                                   | 1956-1963                                 |                      | 1912-1919                       |                        |                                       |                 |                                                                                            |                               | 1963-1967                                              |                           |                     |                                                           |
|                   | Treatment                            | 1957-1958 20% basal<br>area removed by<br>selection cut<br>1968 - treatment<br>repeated (14%) | 1964 - Iower 50% cut,<br>regrowth not permitted<br>1968 - upper 50% cut<br>1963 - upper 50% | clearcut.<br>1967 - Iower 50%<br>clearcut |                      | 1919 - Clearcut of<br>watershed |                        | 1946 - 75% reforested<br>mostly pines |                 | 1967 - shrub on 15%<br>chemically treated<br>1974-1976, shrub on<br>20% chemically treated |                               | Road construction 1967<br>Logging 1971-1973            |                           |                     |                                                           |
|                   | Mean<br>Annual<br>Streamflow<br>(mm) |                                                                                               |                                                                                             |                                           |                      | 153                             |                        |                                       |                 |                                                                                            |                               |                                                        |                           |                     |                                                           |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   |                                                                                               |                                                                                             |                                           |                      | 534                             |                        |                                       |                 |                                                                                            |                               |                                                        |                           |                     |                                                           |
|                   | Control<br>Aspect                    |                                                                                               |                                                                                             |                                           |                      | SE                              |                        |                                       |                 |                                                                                            |                               |                                                        |                           |                     |                                                           |
|                   | Mean<br>Elevation<br>(m)             |                                                                                               |                                                                                             |                                           |                      | 3110                            |                        |                                       |                 |                                                                                            |                               | 37-230                                                 |                           |                     | 470                                                       |
|                   | Slope<br>(%)                         |                                                                                               |                                                                                             |                                           |                      |                                 |                        |                                       |                 |                                                                                            |                               |                                                        |                           |                     |                                                           |
|                   | Area<br>(ha)                         |                                                                                               |                                                                                             |                                           |                      | 06                              |                        |                                       |                 |                                                                                            |                               | 483                                                    |                           | 870                 | 770                                                       |
|                   | v Catchment<br>Control               |                                                                                               |                                                                                             |                                           |                      | A                               |                        |                                       |                 |                                                                                            |                               | North Fork                                             |                           | Wye                 | Monoachyle                                                |
|                   | Mean<br>Annual<br>Streamflow<br>(mm) | 607                                                                                           | 788                                                                                         | 493                                       |                      | 158                             |                        | 255                                   |                 | 34                                                                                         |                               |                                                        |                           |                     |                                                           |
|                   | Mean<br>Annual<br>Rainfall<br>(mm)   | 1500                                                                                          | 1469                                                                                        | 1440                                      |                      | 536                             |                        | 1230                                  |                 | 549                                                                                        |                               |                                                        |                           |                     |                                                           |
| Ę                 | Post<br>Treatment<br>Vegetation      |                                                                                               |                                                                                             |                                           |                      |                                 |                        | Regrowth                              |                 | Regrowth                                                                                   |                               |                                                        |                           |                     |                                                           |
| TREATED CATCHMENT | Pre Treatment<br>Vegetation          |                                                                                               |                                                                                             |                                           |                      | Aspen and<br>Conifer            |                        | Mixed<br>hardwoods                    |                 | Chaparral                                                                                  |                               |                                                        |                           |                     |                                                           |
| TREATE            | Climate                              |                                                                                               |                                                                                             |                                           |                      |                                 |                        |                                       |                 |                                                                                            |                               | Mediterranean,<br>dry summers.                         |                           |                     |                                                           |
|                   | L<br>Aspect                          | SE                                                                                            | SE                                                                                          | NE                                        |                      | NE                              |                        | ш                                     |                 | z                                                                                          |                               |                                                        |                           |                     | mot                                                       |
|                   | Mean<br>e Elevation<br>(m)           | 780                                                                                           | 805                                                                                         | 800                                       |                      | 3110                            |                        | 160                                   |                 | 1160                                                                                       | SA                            | 37-320                                                 |                           |                     | ited Kingc<br>540                                         |
|                   | Slope<br>(%)                         |                                                                                               |                                                                                             |                                           | USA                  |                                 | USA                    |                                       |                 |                                                                                            | ornia, US                     |                                                        | mobdom                    |                     | ment, Ur                                                  |
|                   | Area<br>(ha)                         | 36                                                                                            | 22                                                                                          | 24                                        | el Gap.              | 8 1                             | nessee,                | 36                                    | USA             | 3 0                                                                                        | sk, Calift                    | 424                                                    | Inited K                  | 1055                | r experir.<br>685                                         |
|                   | Catchment                            | Fernow 5                                                                                      | Fernow 6                                                                                    | Fernow 7                                  | Wadon Wheel Gap. USA | B                               | Western Tennessee, USA | Pine Tree<br>Branch                   | White Spar. USA | ß                                                                                          | Caspar Creek, California, USA | South Fork                                             | Plynlimon, United Kingdom | Severn              | Balquhidder experiment, United Kingdom<br>Kirkton 685 540 |

# Integrated catchment management in the Murray-Darling Basin

A process through which people can develop a vision, agree on shared values and behaviours, make informed decisions and act together to manage the natural resources of their catchment: their decisions on the use of land, water and other environmental resources are made by considering the effect of that use on all those resources and on all people within the catchment.

### Our values

We agree to work together, and ensure that our behaviour reflects that following values.

### Courage

• We will take a visionary approach, provide leadership and be prepared to make difficult decisions.

### Inclusiveness

- We will build relationships based on trust and sharing, considering the needs of future generations, and working together in a true partnership.
- We will engage all partners, including Indigenous communities, and ensure that partners have the capacity to be fully engaged.

### Commitment

- We will act with passion and decisiveness, taking the long-term view and aiming for stability in decision-making.
- We will take a Basin perspective and a nonpartisan approach to Basin management.

### **Respect and honesty**

- We will respect different views, respect each other and acknowledge the reality of each other's situation.
- We will act with integrity, openness and honesty, be fair and credible and share knowledge and information.
- We will use resources equitably and respect the environment.

### Flexibility

• We will accept reform where it is needed, be willing to change, and continuously improve our actions through a learning approach.

### Practicability

 We will choose practicable, long-term outcomes and select viable solutions to achieve these outcomes.

### Mutual obligation

- We will share responsibility and accountability, and act responsibly, with fairness and justice.
- We will support each other through the necessary change.

## Our principles

We agree, in a spirit of partnership, to use the following principles to guide our actions.

### Integration

• We will manage catchments holistically; that is, decisions on the use of land, water and other environmental resources are made by considering the effect of that use on all those resources and on all people within the catchment.

### Accountability

- We will assign responsibilities and accountabilities.
- We will manage resources wisely, being accountable and reporting to our partners.

### Transparency

- We will clarify the outcomes sought.
- We will be open about how to achieve outcomes and what is expected from each partner.

### Effectiveness

- We will act to achieve agreed outcomes.
- We will learn from our successes and failures and continuously improve our actions.

### Efficiency

• We will maximise the benefits and minimise the cost of actions.

### Full accounting

• We will take account of the full range of costs and benefits, including economic, environmental, social and off-site costs and benefits.

### Informed decision-making

- We will make decisions at the most appropriate scale.
- We will make decisions on the best available information, and continuously improve knowledge.
- We will support the involvement of Indigenous people in decision-making, understanding the value of this involvement and respecting the living knowledge of Indigenous people.

### Learning approach

- We will learn from our failures and successes.
- We will learn from each other.